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Abstract—Objective: Neuroanatomical structures within the
cortical and sub-cortical brain regions process emotion and cause
subsequent variations in signals such as skin conductance and
electrocardiography. The signals often encode information in
their continuous-valued amplitudes or waves as well as in their
underlying impulsive events. We propose to track psychological
arousal from this hybrid source of skin conductance information.
Methods: We present a point process state-space method in
tandem with Bayesian filtering for determining a continuous-
valued arousal state from skin conductance measurements. To
perform state estimation, we relate arousal to binary- and
continuous-valued observations derived from the phasic and
tonic parts of a skin conductance signal, and recover model
parameters using expectation-maximization. We evaluate our
model on both synthetic and two different experimental data
sets. Stress was artificially induced in the first experimental data
set and the second comprised of a fear conditioning experiment.
Results: Results on the first data set indicate high levels of
arousal during exposure to cognitive stress and low arousal
during relaxation. Plausible results are also obtained in the fear
conditioning data set consistent with previous skin conductance
studies in similar experimental contexts. Conclusion: The state-
space approach—which does not rely on external classification
labels—is able to continuously track an arousal level from skin
conductance features. Significance: The method is a promising
arousal estimation scheme utilizing only skin conductance. The
approach could find applications in wearable monitoring and
the study of neuropsychiatric conditions such as post-traumatic
stress disorder.

Index Terms—State-space methods, Kalman filters, biomedical
signal processing, emotion recognition, affective computing

I. INTRODUCTION

HUMAN emotions are complex and varied. Structures
within the brain’s limbic system primarily govern emo-

tion [1]. Emotions processed within the central nervous system
manifest themselves through several means—most notably
through changes in physiological signals, hormone secretions
and immune responses [2]. Much attention has been devoted
in the literature to examining the relationships between psy-
chological processes and accompanying physiological signal
variation patterns. Despite the effort however, significant chal-
lenges still remain—especially in the field of automated emo-
tion recognition for wearable monitoring. Wearable emotion
monitoring would find applications in stress tracking and the
management of emotion-related neuropsychiatric disorders.
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Recent efforts in continuous-valued emotion recognition
using physiological signals have largely relied on supervised
learning techniques based on the Remote Collaborative and
Affective Interactions (RECOLA) database [3]. The database
contains electrocardiography (EKG) and skin conductance
signals acquired from subjects while they engaged in collabo-
rative online tasks. Six annotators subsequently viewed the first
5 min of each of the subjects’ video and audio recordings, and
manually provided moment-by-moment valence and arousal
ratings on a continuous scale between +1 and -1. Valence
refers to the pleasure-displeasure or positive-negative aspect of
an emotion while arousal denotes its corresponding activation
[4]. Regression methods for predicting arousal based on the
RECOLA database using skin conductance features alone
include recurrent neural networks [5], regression trees [6],
support vector regression [7], [8] and linear models [9]. Fea-
tures examined have included basic skin conductance statistics,
derivatives, band powers, entropy measures etc. and prediction
accuracy is generally reported in terms of a correlation with
the ground truth provided by the annotators.

Other affect recognition databases containing physiological
signal data have relied on subject scores or population ratings
for labels, and do not provide moment-by-moment annota-
tions. The Database for Emotion Analysis using Physiological
Signals (DEAP) for instance, provides both self-reported and
population arousal and valence scores for each of the minute-
long music videos that subjects had to view [10]. Likewise,
the Multi-Modal Database for Affect Recognition and Implicit
Tagging (MAHNOB-HCI) provides a single arousal and va-
lence score for each movie clip viewed [11]. Such scores have
often been separated into the high and low valence and arousal
categories (i.e., discrete) for classifying physiological features
extracted during each music/video clip. Self-reported scores
however, can have significant inter-subject variability [10].
Moreover, experiments such as one whose data is analyzed
here—the study of human fear learning through Pavlovian
conditioning—do not necessarily conform to the traditional
supervised learning paradigm. In this type of experiment,
an animal or person gradually learns to associate a neutral
stimulus with a more significant one through repeated ex-
posure [12]. Eventually, the neutral stimulus alone begins
to elicit a biological response similar to that expected from
the non-neutral one. We therefore use a state-space approach
that does not rely on external labels. Here, skin conductance
features form the observations corresponding to an unobserved
emotional state.
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Sweat chiefly serves to regulate the body’s internal temper-
ature. Despite this primary role played in homeostasis, tiny
variations in sweat secretions, and consequently the skin’s
conductivity, occur in response to arousing stimuli. A skin
conductance signal comprises of a slow-varying tonic com-
ponent and a much faster phasic component [13]. The phasic
component consists of multiple skin conductance responses
(SCRs) resulting from bursts of underlying sudomotor nerve
activity [14]. Each of the SCRs can be modeled as the con-
volution between an impulse of a certain magnitude and a bi-
exponential impulse response function [15]. Multiple studies
have attested to the relationship between skin conductance
and arousal [16]. The tonic part, also known as the skin
conductance level, is thought to capture general autonomic
arousal [17], while the SCRs making up the phasic component
usually result from sweat expulsions occurring in response
to more specific excitement- or arousal-triggered stimuli [14].
Additionally, the tonic and phasic components represent dif-
ferent brain region activity and underlying neural substrates
[18]. The tonic level, the SCR peak amplitudes and the rate
of the SCRs (caused by bursts of neural firing) are among
the features that encode emotion information from the central
nervous system. Recovering the neural stimuli causing skin
conductance variations thus provides a window into the brain’s
emotional processes.

Point process state-space (PPSS) methods have been exten-
sively applied to the study of neural spike trains. Application
scenarios have included neuroprosthesis [19], [20], movement
tracking [21], [22], behavioral learning [23], [24] and the
control of medically-induced coma [25]. The depolarization of
cells in the heart’s sino-atrial node is also similar to the axon
potential mechanism in a neuron [26]. Consequently, point
process methods have also been applied to the analysis of elec-
trocardiography (EKG) signals (e.g. [27], [28]). PPSS methods
have not been solely restricted to the analysis of binary data,
but have also been extended to incorporate continuous-valued
observations as well. These augmented models incorporate
continuous-valued observations such as reaction times and
have been again applied to behavioral learning [29], [30], [31],
sleep studies [32], [33] and anesthetic-induced unconscious-
ness [34], [35].

Neural spike trains underlie the generation of skin conduc-
tance signals. Therefore, the point process approach naturally
lends itself as tool for skin conductance analysis. However,
PPSS methods have only scarcely been applied to the analy-
sis of skin conductance data. In a skin conductance signal,
information is not only contained in the SCR occurrences
themselves, but rather in the tonic and phasic component
amplitudes as well. We therefore propose the use of an
extended PPSS model to the study of psychological arousal
using skin conductance measurements. We relate three features
taken from skin conductance—the binary occurrence or non-
occurrence of SCR peaks, the tonic part and a signal de-
rived from the phasic part—to the brain’s unobserved arousal
state and use Bayesian filtering for estimation. We derive an
expectation-maximization (EM) approach to estimate model
parameters. The present work is an extension of [36] which
only considered the appearance of neural spikes (binary)

related to a skin conductance signal. The recent work in [36]
is one of the early works for tracking emotion by explicitly
making use of the point process methodology.

Section 2 describes our model formulation and the results
are presented thereafter. We next provide a discussion of our
results and finally conclude with section 5 noting possible
future directions.

II. METHODS

A. Data

1) Data Set 1 - Neurological Status Assessment: We first
used the Non-EEG Data Set for Assessment of Neurologi-
cal Status [37]. This data set is publicly available through
PhysioNet [38], and contains skin conductance, heart rate,
body temperature, movement (accelerometer data) and blood
oxygenation signals from 20 subjects who were exposed to
physical, cognitive and emotional stress. The purpose of the
experiment was to probe a subject’s neurological stress state
using peripheral signals (psychological stress is a function of
arousal [39]). The skin conductance, body temperature and
accelerometer signals were collected using the Affective Q
Curve wearable biosensor. Skin conductance reflects changes
in sweat secretions occurring due to sympathetic nervous
system arousal [40]. Heart rate and blood oxygenation were
acquired using the Nonin Wireless WristOx2 oximeter. Blood
oxygen is measured by the saturation percentage of oxygen in
hemoglobin (SpO2) and is an indication of how much oxygen
is present in the blood. Signals such as skin conductance, heart
rate, SpO2 and body temperature show subtle variations during
different emotions [41] and have thus frequently been used in
the field of affective computing for automated emotion recog-
nition (e.g. [10], [11], [3], [42]). We discarded the physical
stress component at the start of the experiment consisting of
standing, walking and jogging, and instead focus solely on
the psychological and cognitive aspects. The cognitive stress
component, which came second, consisted of two tasks—
counting backwards in 7’s beginning at 2485 and the Stroop
test. In a typical Stroop test, subjects are presented with a word
on a computer screen denoting a color; the color in which the
word is written however, does not necessarily correspond to its
semantic meaning. A buzzer notified subjects of mistakes they
made while counting or performing the Stroop test. Thirdly
and finally, a horror movie clip was used to induce emotional
stress. Both the cognitive and emotional stress periods lasted
for about 5 min each and were interspersed by 5 min periods
of relaxation. Birjandtalab et al. [37] noted that the subjects
even began showing signs of stress during the 40 s prior
to the cognitive tasks while they were just being given the
instructions, and hence chose to include this period among
the stressors as well.

2) Data Set 2 - Fear Conditioning: Secondly, we used the
PsPM-HRA1: Skin Conductance Responses in Fear Condition-
ing with Visual CS and Electrical US Data Set [43] containing
recordings from 20 subjects who participated in a Pavlovian
fear conditioning task. The data set is described in more detail
in [44], [45]. A fear conditioning paradigm consists of two
types of conditioned stimuli (CS+ and CS-), only one of which
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(CS+) is followed by an unpleasant unconditioned stimuli
(US), such as a shock. The other conditioned stimuli (CS-) is
never accompanied by the US. Fear conditioning experiments
based on skin conductance acquisition have frequently been
used in the study of neuropsychiatric diseases such as post-
traumatic stress disorder (PTSD) [46] and panic attacks [47].
In the data set used here, the conditioned stimuli CS+ and CS-
were orange and blue circles on a screen. The CS+ stimuli
were accompanied by a 0.5 s duration electric shock 50% of
the time after a time delay of 3.5 s. The 500 Hz electric shock
was delivered to a subject’s forearm via a pin-cathode/ring-
anode setup. The electric current amplitudes were varied based
on individual pain assessment prior to the experiment. There
were a total of 180 trials—90 for each CS type. In a typical
fear conditioning experiment such as this, the CS+ stimuli
alone eventually begin to generate stress responses while the
subjects gradually become indifferent to the CS- cues. For
each subject, skin conductance was measured using Ag/AgCl
cup electrodes placed on the thenar/hypothenar of the subject’s
non-dominant hand with a constant voltage of 2.5 V applied.

Skin conductance has been extensively examined in classi-
cal Pavlovian fear conditioning tasks owing to its sensitivity to
sympathetic arousal [16], [48]. Here, a neutral stimulus such
as a tone or visual marker is paired with a biological stimulus
meant to elicit a response. Through repeated exposure, a
subject learns an association between the two types stimuli and
eventually begins to respond to the neutral stimulus in a man-
ner similar to that induced by the other. In fear conditioning,
the biological stimulus is aversive (e.g. an electric shock). Mul-
tiple studies have sought to discover the neural circuitry in the
brain underlying fear learning. Although the precise pathways
are not fully known, the amygdala and the hippocampus are
thought to play a prominent role in processing external sensory
inputs and mediating the autonomic and behavioral response
to fear [49]. Outputs from these brain regions travel down
the spinal cord to the cholinergic sympathetic nerve fibers
innervating the sweat glands [50]. Consequently, changes in
skin conductance (arising due to sweat secretions) provide an
indication of autonomic sympathetic arousal [40]; skin con-
ductance is thus the most widely used measure of autonomic
activity in fear conditioning experiments [51].

B. Preprocessing

We downsampled the skin conductance signals from both
data sets to 4 Hz similar to [15]. Motion artifacts, powerline
noise and amplification factor changes can significantly dis-
tort experimental skin conductance measurements [16]. We
discarded data from 9 subjects in the neurological status
assessment data set containing large discontinuities between
consecutive experimental phases and more severe noise con-
tamination. Next, we manually identified sharp drops in the
signals (likely caused by electrode movement) and interpolated
over them using the preceding and subsequent 1 s of data.
Finally, the data was FIR lowpass filtered at 0.5 Hz for
smoothing and noise reduction similar to [52]. Skin conduc-
tance signals in the fear conditioning data set were similarly
filtered although motion artifact correction did not have to be

applied. Subject information for both data sets is provided in
the supplementary information section. We finally decomposed
the skin conductance signals into their constituent tonic and
phasic parts using cvxEDA [53].

C. State-space Model

Random walk models and first order autoregressive pro-
cesses have been frequently used in the estimation of unob-
served dynamic neural states from point process data [23],
[31], [32], [54]. Similar to [54] we assume the brain’s arousal
state xk follows a first-order autoregressive model

xk = ρxk−1 + αik + εk, (1)

where εk ∼ N(0, σ2
ε ) is noise and ik is an indicator function

representing external stimuli. Individual SCRs can be isolated
by detecting peaks in the phasic part of a skin conductance
signal that are above a 0.01–0.05 µS threshold [13]. We detect
these SCR peaks based on a minimum peak threshold of 0.015
µS. We next prepare a binary signal mk = {0, 1} based on
the non-occurrence or occurrence of an SCR peak at each
time index k. The occurrence of such an SCR peak follows
a Bernoulli distribution with probability pk . We therefore
apply the theory of generalized linear models to relate it to
the arousal state xk . McCullagh and Nelder [55] suggest the
use of the logit, inverse normal or complementary log-log
transformation when fitting such a model. Such logarithmic
transforms are common in the case where response variables
are count or frequency type data. Similar to [23] we use the
logit transform.

log

(
pk

1 − pk

)
= β + xk =⇒ pk =

1
1 + e−(β+xk )

(2)

As in [23], we assume a zero starting state at the very
beginning and calculate β = log[p0(1 − p0)

−1] taking p0 as
the average probability that mk = 1 [36]. According to (2),
the higher the arousal xk , the higher will be the probability
of SCR occurrence. The increased rate of SCR occurrence as
an index of higher autonomic arousal has been attested to in
studies involving thought suppression [56], task complexity
[57], alcohol consumption [58] and speech processing [59].

We next consider the tonic (sk) and phasic (r̃k) components
of the skin conductance signal zk . As mentioned earlier,
changes in the tonic component are thought to “reflect general
changes in autonomic arousal" [17]. The tonic level as also
been taken as a measure of arousal in studies involving
anti-social behavior [60], thought suppression [61], alcohol
consumption [58] and personality types [62]. Higher tonic
levels indicate higher arousal. Continuous observations are
frequently modeled as being linearly related to unobserved
states in augmented PPSS methods [30], [31]. We too take sk
to be related to xk as follows:

sk = δ0 + δ1xk + wk, (3)

where δ0, δ1 are regression coefficients to be determined, and
wk ∼ N(0, σ2

w) represents sensor noise and modelling error.
The phasic component r̃k , which consists of the entire

sequence of SCRs, unlike its tonic counterpart, is significantly
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skewed. A log transformation [16] helps correct this skew (Fig.
1). Moreover, arousal is related to the SCR peak amplitudes
[63] rather than to r̃k as a whole. SCR amplitudes have
been used as indicators of psychological arousal in studies
involving emotional sounds [64] and pictures [65]. Again,
higher SCR amplitudes reflect higher arousal. In order to both
improve skewness and capture arousal information from the
peak amplitudes, we derive an artificial signal rk in two steps.
We first select only the subset of SCR peak amplitudes along
with the first (r̃1) and last (r̃K ) values

r∗ = {r̃k |mk = 1} ∪ {r̃1, r̃K }. (4)

Then we apply a cubic interpolation over log r∗ to make up
rk . Fig. 2 depicts the derivation of rk from r̃k on some sample
data. Similar to (3) we finally model,

rk = γ0 + γ1xk + vk, (5)

where γ0, γ1 are to be determined and vk ∼ N(0, σ2
v )

represents an error term similar to wk . The three observations
mk , rk and sk that are finally extracted from a skin conductance
signal are illustrated in Fig. 3. Note that the tonic level, the
SCR rate and the SCR amplitude are among the most reported
skin conductance-related measures of arousal [41].

Given the observations MK = {m1,m2, . . . ,mK }, RK =

{r1, r2, . . . , rK }, SK = {s1, s2, . . . , sK }, and letting YK =

{MK,RK,SK }, we wish to determine XK = {x1, x2, . . . , xK }.
To do so, we use Bayesian filtering within an EM
framework. In the E-step, we first obtain the estimates
of XK conditioned on YK and the model parameters
{α, ρ, γ0, γ1, δ0, δ1, σ

2
v, σ

2
w, σ

2
ε }. In the M-step, we choose the

model parameters that maximize the expected value of the
complete data log-likelihood. The algorithm alternates be-
tween the E-step and the M-step until convergence. The
following sub-sections describe the E- and M-steps.

D. Estimation – E-Step
We estimate XK in two steps using both a forward filter and

a backward smoother. We first make a Gaussian approxima-
tion (supplementary information) to the posterior distribution
p(xk |yk) similar to [29], [31] in order to obtain the following
Kalman-like filter equations for k = 2 : K .

xk |k−1 = ρxk−1 |k−1 + αik (6)

σ2
k |k−1 = ρ

2σ2
k−1 |k−1 + σ

2
ε (7)

Ck =
σ2
k |k−1

σ2
vσ

2
w + σ

2
k |k−1(γ

2
1σ

2
w + δ

2
1σ

2
v )

(8)

xk |k = xk |k−1 + Ck

[
σ2
vσ

2
w(mk − pk |k)

+ γ1σ
2
w(rk − γ0 − γ1xk |k−1)

+ δ1σ
2
v (sk − δ0 − δ1xk |k−1)

]
(9)

σ2
k |k =

[
1

σ2
k |k−1

+ pk |k(1 − pk |k) +
γ2

1

σ2
v

+
δ2

1

σ2
w

]−1

(10)

Now,

pk |k =
1

1 + e−(β+xk |k )
(11)

causes xk |k to appear on both sides of (9) and has to be solved
numerically via the Newton-Raphson method [23]. Similar to a
Kalman filter update step, (9) contains innovation terms for the
continuous variables rk and sk and also a term comparing the
binary value mk to its predicted probability pk |k . The smoothed
estimates xk |K and σ2

k |K
conditioned on having observed all

the data up to time index K are obtained as [23], [66],

ak , ρ
σ2
k |k

σ2
k+1 |k

(12)

xk |K = xk |k + ak(xk+1 |K − xk+1 |k) (13)

σ2
k |K = σ

2
k |k + a2

k(σ
2
k+1 |K − σ

2
k+1 |k). (14)

E. Estimation – M-Step
The parameters {α, ρ, γ0, γ1, δ0, δ1, σ

2
v, σ

2
w, σ

2
ε } are deter-

mined in the M-step. These parameters are selected to max-
imize the expected value of the complete data log-likelihood
(we derive the M-step updates in the supplementary informa-
tion). We make use of the state-space covariance algorithm
when deriving our parameter estimates [67]. Defining the
following terms,

uk , x2
k |K + σ

2
k |K (15)

uk,k+1 , xk |K xk+1 |K + akσ2
k+1 |K (16)

we obtain the following parameter estimates for the (n + 1)th
EM iteration.[

ρ(n+1)

α(n+1)

]
=

[ ∑K−1
k=1 uk

∑K
k=2 ik xk−1 |K∑K

k=2 ik xk−1 |K
∑K

k=1 i2
k

]−1

×[ ∑K−1
k=1 uk,k+1∑K
k=2 ik xk |K

]
(17)[

γ
(n+1)
0
γ
(n+1)
1

]
=

[
K

∑K
k=1 xk |K∑K

k=1 xk |K
∑K

k=1 uk

]−1

×[ ∑K
k=1 rk∑K

k=1 rk xk |K

]
(18)

σ
2(n+1)
v =

1
K

[
K∑
k=1

r2
k + Kγ2(n+1)

0 + γ
2(n+1)
1

K∑
k=1

uk (19)

− 2γ(n+1)
0

K∑
k=1

rk − 2γ(n+1)
1

K∑
k=1

xk |Krk

+ 2γ(n+1)
0 γ

(n+1)
1

K∑
k=1

xk |K

]
σ

2(n+1)
ε =

1
K

[
K∑
k=2

uk − 2ρ(n+1)
K−1∑
k=1

uk,k+1

+ ρ2(n+1)
K−1∑
k=1

uk − 2α(n+1)
K∑
k=2

ik xk |K

+ 2α(n+1)ρ(n+1)
K∑
k=2

ik xk−1 |K

+ α2(n+1)
K∑
k=1

i2
k

]
(20)
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Fig. 1: A phasic skin conductance signal and its histograms. The upper sub-panel depicts the phasic component of the
skin conductance signal from subject 1 in the fear conditioning data set. The lower left sub-panel shows its histogram and the
right sub-panel the same after a log transformation has been applied. The transformation significantly improves skewness of
the phasic component.
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Fig. 2: Deriving rk from r̃k . The upper sub-panel depicts the
phasic component r̃k along with the points r∗ consisting of
the values at either end and the peaks. The lower sub-panel
depicts the cubic interpolated line joining log r∗ which makes
up rk .

The M-step updates for δ(n+1)
0 and δ

(n+1)
1 can be obtained by

replacing rk with sk in (18). Likewise, σ2(n+1)
w can be obtained

similar to (19).
III. RESULTS

A. Simulated Data

We first generated some synthetic data for an arousal state
process xk to check the convergence of our EM approach

using the parameters Θ = {α, ρ, β, γ0, γ1, δ0, δ1, σ
2
v, σ

2
w, σ

2
ε } =

{0.04, 0.995, −4.595, 0.35, 0.4, −0.7, 0.2, 0.002,
0.005, 0.03}. These values were chosen based on prior expe-
rience with experimental data. We arbitrarily set ik = 1 at 25
time instances and 0 elsewhere. The EM stopping criteria is
similar to [23], [30] and we consider the parameters to have
converged once their absolute mean deviation in consecutive
iterations does not exceed 10−8.

Recall that we calculate β = log[p0(1 − p0)
−1] using an

approximation for p0 as the average probability that mk = 1
[36]. We call this approximate probability p̂0. The value
chosen for β in the synthetic data corresponds to p0 = 0.01,
i.e., β = log[0.01(1 − 0.01)−1]. We generated two synthetic
data sets for which the approximation p̂0 was lower than,
and then higher than 0.01. The recovered model parameters
Θ̂ are shown in Table I. The state estimates and fits to the
observed data are shown in Fig. 4 and in the supplementary
information. While our proposed scheme can recover model
parameters and estimate xk reasonably well, the less-than-
true approximation (p̂0 < 0.01) causes the state xk to be
overestimated by an almost constant amount (Fig. 4) and the
higher-than-true approximation (p̂0 > 0.01) causes xk to be
slightly underestimated (supplementary information). A note
on how the effect of this can be mitigated on experimental
data is made in the subsequent discussion section.

B. Experimental Skin Conductance Data

When using the proposed model on experimental skin con-
ductance data, the EM algorithm can converge to parameters
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Fig. 3: A skin conductance signal and its constituent
components. The sub-panels from top to bottom respectively
depict the original skin conductance signal zk , the phasic part
with its SCR peaks (mk indicates the peak occurrences), the
phasic derived component rk and the tonic part sk .

TABLE I: Parameter Estimation with Simulated Data

Θ Θ̂ (p̂0 < 0.01) Θ̂ (p̂0 > 0.01)

α = 0.04 0.018 0.021
ρ = 0.995 0.994 0.994
β0 = −4.595 -4.64 -4.057
γ0 = 0.35 0.233 0.608
γ1 = 0.4 0.450 0.377
δ0 = −0.7 -0.758 -0.571
δ1 = 0.2 0.224 0.187

σ2
V = 0.002 0.0022 0.0016

σ2
W = 0.005 0.0046 0.0050
σ2
ε = 0.03 0.0219 0.0216

where the shape of xk fits almost perfectly to either rk or sk . It
is likely that there are two locally optimal points in the model
parameter space at these locations. However, we would like
the arousal state to fit to both the tonic and phasic-derived
components capturing the neural dynamics underlying each of
them. Recall that both the phasic and tonic parts represent
different neural activity from different parts of the brain [18],
and we would like to capture arousal information from both
regions. Additionally, the tonic component captures general
arousal while the phasic captures arousal related to specific
stimuli. With the near-perfect shape alignment of xk only to
one of them, either σ2

v or σ2
w is driven very low at the expense

of the other. Therefore, we divide rk and sk by their respective
standard deviations and allow the parameters related just to
them, i.e. {γ0, γ1, δ0, δ1, σ

2
v, σ

2
w}, to update at a given M-step

iteration only if the absolute difference between σ
2(n+1)
v and

σ
2(n+1)
w is less than 0.1. This heuristic constraint helped prevent

xk from overfitting only to one of them.
1) Data Set 1 - Neurological Status Assessment: Since the

precise timings of the stimuli (i.e., Stroop test word appear-
ances and buzzer sounds) are not provided in the neurological
status assessment data set, we drop the αik term from (1).
The state estimates and fits to the binary- and continuous-
valued observations for a representative subject are shown in
Fig. 5. Due to space limitations, the results for the remaining
subjects are provided in the supplementary information. The
shaded background colors in turn correspond to relaxation, the
cognitive stress period (instructions, counting backwards and
the Stroop test), relaxation, the emotional stress period (horror
movie) and relaxation. We have also chosen to show the fits
for erk rather than to the artificial rk in the figures as it is the
exponential term that is actually closer to the physiological
phasic component.

xk lies in the interval (−∞,∞). We therefore adapt the
certainty level measurement in [23], [30] and define a new
quantity which we call the Above-Moderate Arousal Index
(AMAI) as an additional metric that may be more useful
to a wearable device user. We define AMAI as the prob-
ability that xk exceeds a subject-specific threshold using
xk ∼ N(xk |K, σ2

k |K
) at each time point.

AMAI = P(xk > xth), (21)

where xth is a fixed subject-specific threshold. AMAI can, for
instance, provide a score related to how aroused a person is
above their median baseline. The greater a person’s arousal, the
more the probability distribution of xk shifts to the right giving
a high AMAI value. We selected this threshold xth using a
Receiver Operating Characteristic (ROC) curve considering
the xk values during cognitive stress to belong to the positive
class and the values during all the relaxation periods to belong
to the negative class. The emotional stress period does not
appear to have a consistent pattern across all subjects and
therefore we discarded it from either class when identifying the
threshold. The area under the curve (AUC) for each ROC curve
is shown in Table II and the three-level color-coded AMAIs
appear in the last of the sub-panels for each participant. The
three regions (colors) correspond to AMAI ≤ 0.1 (green), 0.1
< AMAI ≤ 0.9 (blue) and 0.9 < AMAI (red).

The time period shown here begins a minute before the
cognitive stress phase commences. The general trend to be
noted for all the subjects is an initial rise in the arousal state xk
to a level at which it remains high during cognitive stress, and
thereafter reduces gradually as the experiment progresses. The
initial increase is quite rapid for a majority of the subjects but
is more gradual for participants 8, 9 and 11. During cognitive
stress, arousal remains high and comparatively steady for
participants 5 and 10. The others exhibit some variations
during this period. There is a gradual decline in xk for
everyone after the cognitive stress period is over. There are
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Fig. 4: Arousal state estimation on synthetic data for p̂0 < 0.01. The sub-panels respectively depict, (a) the original Bernoulli
trial probabilities pk (solid blue line), their estimate (red dashed line) and the presence or absence of binary observations (light
green and black dots above the curve); (b) the quantile-quantile (QQ) plot for the residual error of pk ; (c) the exponent of the
first continuous signal rk (solid blue line) and its estimate (red dashed line); (d) the QQ plot for the residual error of rk ; (e)
the second continuous signal sk (solid blue line) and its estimate (red dashed line); (f) the QQ plot for the residual error of
sk ; (g) the arousal state xk (solid blue line), its estimate (red dashed line) and the presence or absence of stimuli ik driving
the state (cyan and blacks dots below the curve); (h) the QQ plot for the residual error of xk .

TABLE II: Classification Accuracy of Neurological Status
Assessment Data Set

Participant AUC

1 0.9596
2 0.7917
3 0.7287
4 0.9847
5 0.8935
6 0.9217
7 0.9674
8 0.8020
9 0.9027
10 0.9576
11 0.8257

however, some fluctuations in arousal for participants 3 and 6
during the relaxation period that immediately follows cognitive
stress.

The arousal response is more varied during the emotional
stress (horror movie) period. It is to be noted primarily, that

with the possible exception of participant 3, arousal during the
emotional stress period is lower than it was during cognitive
stress. Participants 8, 9, 10, and 11 show almost no fluctuations
in arousal during this phase. For participants 1, 2 and 5 there is
a slight increase (similar to a bump) around the beginning of
emotional stress. For participants 4, 6 and 7 there is more
fluctuation during this period. Arousal is seen to decrease
thereafter during the final period of relaxation. The color coded
AMAIs also tend to follow the general trend of xk .

2) Data Set 2 - Fear Conditioning: We set ik = 1 at the
external CS+, CS- and US stimuli time instances, and ik = 0
elsewhere. An additional constraint was also placed to ensure
that α did not become negative in the EM iterations. The
result for a representative subject is shown in Fig. 6 and the
remaining results are given in the supplementary information.

Since the fear conditioning experiment is in a category
similar to the study of event-related potentials (ERPs) using
electroencephalography signals, we provide the 10 s ERP-like
images averaged across the three different types of trials (CS+



8

Fig. 5: Arousal state estimation on the neurological status
assessment data set. The sub-panels from top to bottom
respectively depict, (a) the original skin conductance signal;
(b) the smoothed Bernoulli trial probability estimates of pk
(red line) and the presence or absence of SCR peaks (light
green and black dots above the curve); (c) the exponent of
the phasic derived signal rk (solid green line) and its estimate
(dotted line); (d) the tonic component sk (solid light mauve
line) and its estimate (dotted line); (e) the smoothed arousal
state estimates of xk ; (f) the color-coded AMAI values. The
shaded backgrounds correspond in turn to relaxation, cognitive
stress, relaxation, emotional stress and relaxation.

without the shock, CS+ with the shock and CS-). Each epoch
begins 1 s prior to the CS+ or CS- visual stimuli and extends
to 9 s following it.

Previous fear conditioning studies examining SCR prob-
abilities, SCR amplitudes and skin conductance levels have
majorly focused on differences in these observations between
the CS+ and CS- trials (e.g. [68], [69]). In the data set used
here, the general observation is that both the skin conductance
zk and the estimated state xk are higher when CS+ is accompa-
nied by the shock. The values are lowest mostly for CS-. This
trend is consistent with skin conductance results from previous
studies. The averaged differences between the responses are
pronounced for subjects 1, 2, 5, 6, 9, 10, 12, 15, 18, 19 and
20. In the case of some of the other subjects however, the
difference between the CS- epochs and CS+ without-the-shock
epochs are very small. Possible reasons for this are discussed
in the following section. It is to be noted however, that when
the difference between the averaged skin conductance epochs
is small for the three conditions, the difference between the

Fig. 6: Arousal state estimation on the fear conditioning
data set. The sub-panels from top to bottom respectively de-
pict, (a) the original skin conductance signal; (b) the smoothed
Bernoulli trial probability estimates of pk (red line) and the
presence or absence of SCR peaks (light green and black dots
above the curve); (c) the exponent of the phasic derived signal
rk (solid green line) and its estimate (dotted line); (d) the tonic
component sk (solid light mauve line) and its estimate (dotted
line); (e) the smoothed arousal state estimates of xk and the
presence or absence of visual or electric stimuli (cyan of blacks
dots below the curve); (f) a 10 s ERP-like skin conductance
plot for the CS- (green), CS+ without a shock (mauve) and
CS+ with the shock (red) trials; (g) 10 s ERP-like arousal state
plots along with their confidence intervals.

corresponding state epochs also tends to be small.

IV. DISCUSSION

A. Simulated Data

The calculation for β using the approximation for p0 causes
the true state to be over- or underestimated by a certain
amount. Now, the estimated arousal state is a real-valued quan-
tity and relative increases are of importance in experimental
data. Moreover, the AMAI provides a means of calculating a
more useful metric based on a person-specific threshold. The
effect of the over- or underestimation can be mitigated by the
use of such person-specific thresholds on wearable devices. A
second option would be to obtain the range of variation for
a subject’s arousal during a calibration or training phase and
normalize subsequent values after dividing by this range.
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B. Experimental Data

Different people are impacted by identical stressful stimuli
differently. In the neurological status assessment data set, a
fairly consistent pattern was observed of high arousal during
the cognitive stress period and low arousal during relaxation.
The horror movie (emotional stress) generated some amount
of arousal in the subjects, but was not as pronounced/high as
during the cognitive tasks. The backward counting task and
Stroop test involved active engagement on the part of the sub-
jects requiring them to concentrate and perform calculations.
In contrast, the horror movie only involved passive engage-
ment with the subjects just having to look at a screen. It is
therefore not unexpected that the varying levels of engagement
accompanying both types of external stressors elicited different
arousal responses. A few participants appeared to show some
degree of arousal at the beginning of the movie and others
were completely indifferent to it. This may have been due to
prior familiarity with the clip being shown. It is also to be
noted that some subjects arousal levels rise (and fall) more
rapidly than others possibly owing to some of them becoming
stressed more easily.

Additionally, although both the counting task and the Stroop
test were grouped under the same category called cognitive
stress, some subjects show higher levels of arousal during the
Stroop test than during the counting task (e.g. participants
8 and 11). This may have been the case for subjects who
found arithmetic calculations easier than the color-word visual
processing task.

State estimation results from the fear conditioning data set
are also as expected. The CS+ stimuli accompanied by the
electric shock tend to generate the highest level of arousal.
In fear learning experiments, electric shocks that are not
unpleasant enough can occasionally cause a subject not to
fear the CS+ stimuli. In such cases, a clear separation in
zk and xk between the three different types of epochs may
not necessarily occur as would typically be expected. Bach et
al. [44] describe how pain and discomfort thresholds were
assessed for the subjects in the experiment before finally
setting the electric shock intensity just below each individual’s
pain threshold. Pain thresholds can vary from person to person
and therefore may be the one of the causes for the variations
seen in the zk and xk separations.

The CS+, CS- and US stimuli are all different. Therefore,
a more comprehensive model for fear conditioning would be

xk = ρxk−1 + αCS+iCS+
k + αCS−iCS−

k + αUSiUS
k + εk, (22)

with stimulus-specific α coefficients. Here, we have treated all
the stimuli the same with a single α term and ik = 1 at each
of the stimuli instances. We leave an extended model with
stimulus-specific terms for future work.

We also evaluated the state-space model on the fear con-
ditioning data set without the ik term. This provided almost
identical results to that with the ik included, except for the
jumps seen at the times when stimuli were presented. The
inclusion of external input provides additional information to
the model. PPSS methods with [54] and without [70] external
inputs in the state equation have been successfully applied to

the analysis of spiking neural activity. PPSS methods without
external inputs have also met with success in estimating behav-
ioral learning [23]; however, the inclusion of external inputs
has been suggested as an improvement [24]. The external input
affecting psychological arousal xk is likely quite complex (e.g.
stress and excitement may affect arousal in different ways).
Here, we have considered one of the simplest cases where
we set ik = 0 or ik = 1 based on spontaneous inputs in the
fear conditioning data set. Smith et al. [54] too modeled the
external input as a binary indicator in spike train analysis.
Stimulus timings are unavailable in the neurological status
assessment data set and we were unable to include the ik effect.

The EM approach presented here is offline as it requires all
the observations YK = {MK,RK,SK } upon which to run the
E-step and M-step until convergence. Therefore, on a wearable
device, we propose to run just the forward filter in the E-step,
and only execute the full EM procedure in the background
from time to time (Fig. 7). A wearable device user would
then be able to see his/her arousal estimate xk |k in real-time.
Additionally, running EM periodically would allow the model
parameters to adapt to different circumstances. Our current
implementation on average takes 3.12 s to run on Data Set 1
and 6.5 s on Data Set 2 for a subject (MATLAB R2017a, Intel
Xeon processor, 64 GB RAM). Since the time consumption
will be much greater on a low-power wearable device, another
option would be to stream all the data to the internet and per-
form all analysis on the cloud to conserve battery power. Cloud
data analysis however, is likely to introduce communication
latency. The amount of delay that can be tolerated would be
application specific. For instance, depression typically involves
prolonged periods of low arousal [71] while PTSD involves
symptoms of hyperarousal (e.g. angry outbursts) [72]. A longer
delay would be tolerable in the case of depression while a
much shorter delay would be ideal in the case of a PTSD
patient. While further research would be necessary, a latency of
less than a minute would be preferable when tracking arousal.

Deep brain stimulation (DBS) has been investigated in a
number of neuropsychiatric disorders including major depres-
sion and PTSD. Open-loop DBS systems involve the periodic
manual adjustment of electrical stimulation parameters based
on symptoms. This is inefficient and has led to the gradual
development of closed-loop DBS. A method to detect arousal
from skin conductance could be used in the feedback path
for automatically adjusting electrical stimulation in a closed-
loop DBS system for patients diagnosed with PTSD or major
depression [73] (Fig. 8).

Recurrent Neural Networks (RNNs) based on Long Short
Term Memory (LSTM) units are able to model nonlinear
input-output relationships, and capture long-term dependen-
cies in sequential data (e.g. [74]). Our current state-space
formulation follows first-order Markovian dynamics and does
not have any nonlinear state transitions. This is a simpli-
fying assumption, and we consider a future extension to
our work where an RNN is used to learn the relationship
xk = g(xk−1, ik) + εk , where g(·) is an arbitrary function.
Evaluating Q̄ = EXK |YK ,Φ log

[
p(XK ∩ YK |Φ)

]
is a critical

step in the EM algorithm, where Φ represents a set of model
parameters (e.g. weights of an RNN or model parameters



10

Preprocessing
– Filtering
– Tonic-phasic separation
– SCR detection

Forward filter
(real-time)

Arousal 
estimate

EM algorithm (background)
– E-step (filter and smoother)
– M-step update 

Skin conductance 
signal

Fig. 7: Flowchart of arousal estimation. The raw skin
conductance signal is first filtered and then separated into its
constituent tonic and phasic components at the preprocessing
stage. SCR peaks are also detected in the phasic component
at this stage. The forward filter at the next stage provides
the real-time arousal estimate. The full EM algorithm is only
executed in the background from time to time to update model
parameters.

such as are used in this work). Following [75], [76], [77],
we propose to use a stochastic form EM where an LSTM-
based RNN maximizes Q̄ by gradually learning the posterior
probability density function p(XK |YK,Φ) through gradient
ascent. With this extension, the RNN is able to estimate the
unknown states xk . This allows the interpretability of the state-
space method to be fused with the powerful nature of RNNs
to capture nonlinear relationships over longer time windows.
Future work would involve evaluating and comparing the
performance of the state-space method presented here with
the RNN-state-space fusion approach.

V. CONCLUSION

PPSS methods have been extensively applied to neural and
EKG data analysis due to the point process nature of the
signals. A neural spike train underlies the generation of a skin
conductance signal, and therefore PPSS methods lend them-
selves naturally as convenient tools for their analysis. Here we
presented a model for tracking arousal from skin conductance
using both binary- and continuous-valued features. The results
obtained on experimental data sets demonstrate its ability to
estimate arousal during different types of stress and in studies
examining the human fear response. Our method also has the
advantage of not requiring external labels. Annotation labels
are often expensive to obtain and may not necessarily be avail-
able in certain types of skin conductance-based experiments.

Future work would include incorporating EKG as yet an-
other point process into the model. Moreover, the method used
here relied on peak detection for locating SCRs. A sparse
deconvolution scheme such as described in [15], [78], [79],
[80] could be employed to recover the underlying sudomotor
nerve activity and used for finding mk instead of relying on

simple peak detection. Furthermore, neuropsychiatric disor-
ders such as PTSD and panic attacks give rise to heightened
fear responses and it would be interesting to study data from
these patients using the methods presented here. A complete
experiment examining the human fear response typically in-
cludes the fear learning, fear recall and fear extinction phases.
Only skin conductance signals from the fear learning stage
were available in the data set used here. Examining how a fear
state evolves over fear recall and fear extinction stages using
the state-space method may help provide additional insight
into certain types of neuropsychiatric disorders.
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