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Abstract—The human body responds to neurocognitive stress
in multiple ways through its autonomic nervous system.
Changes in skin conductance measurements indicate sudomotor
nerve activity, and can be used to infer the underlying auto-
nomic nervous system stimulation. We model skin conductance
measurements using a state-space model with sparse impulsive
events as inputs. Next, we recover the timing and amplitudes of
this spiking neural activity using a generalized cross-validation
based sparse recovery approach. Finally, we relate stress to the
probability that a neural spike occurs in a skin conductance
signal to continuously track a subject’s stress level. Results
demonstrate a promising approach for tracking stress through
wearable devices.

I. INTRODUCTION

Variations in human emotion can be accounted for along
two different dimensions—valence, denoting the pleasure—
displeasure axis, and arousal, denoting activation or ex-
citement. Stress involves high arousal, unpleasantness and
a loss of control. The relationship between arousal and
skin conductance has been attested to in multiple studies
[1]. We present a mechanism for recovering the underlying
neural stimuli leading to sweat gland secretions (which cause
changes in skin conductance) and a state-space model for
detecting stress based on the frequency of this neural spiking

activity. 1. METHODS

A. Sparse Neural Stimuli Recovery

The phasic component in skin conductance data, which
is known to be the smoothed version of underlying sparse
neural spiking activity, can be extracted using cvxEDA [2].
Using a state-space model of the smoothing system based
on the physiology of sweat secretion and evaporation, we
formulate an optimization problem to recover the sparse
stimuli and estimate model parameters. This optimization
problem is divided into two sub-problems having two differ-
ent sets of physiological constraints and is solved iteratively
until convergence. We solve the sparse recovery problem
with the GCV-FOCUSS+ algorithm [3] and estimate model
parameters using the interior-point method similar to [3].
Then, the recovered sparse stimuli are converted to binary
sequences.
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B. Stress State Estimation o
We use Expectation-Maximization (EM) for estimating

stress [1]. We first assume the brain’s stress state follows
a random walk with time. The higher a person’s arousal or
stress level, the more frequent the neural spiking. Therefore,
we relate stress to the probability that a neural spike oc-
curs through a sigmoid function. We next use a Gaussian
approximation, and forward and backward Kalman-like fil-
ter equations. We alternate between E-step filter equations
and M-step parameter updates until convergence. Stress is
finally expressed within a [0, 1] interval based on an ideal’s
observer’s certainty level.
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Fig. 1. Sparse neural stimuli recovery and stress state estimation The

first panel shows a skin conductance signal and its recovered neural stimuli;
the bottom two panels depict the corresponding stress state estimate and
the ideal’s observer certainty level. The first three background shades (red,
green and cyan) on the left correspond to different cognitive stress periods.
The next two shades (grey and blue) depict relaxation and a horror movie

respectively. III. RESULTS
Fig. 1 shows the neural stimuli recovered from a skin con-

ductance signal in [4] and the corresponding stress estimate.
IV. CONCLUSION
Here, we present a method for recovering neural stimuli

from skin conductance using compressed sensing, and an EM
approach for estimating stress from that neural activity.
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