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Abstract— Salty sweat secretions in the epidermis change
the skin’s electrical activity resulting in the measured skin
conductance signal. While the relatively fast variation of skin
conductance (i.e. phasic component) reflects sympathetic ner-
vous system activity, the slow variation (i. e. tonic component)
is related to thermoregulation and general arousal. To better
understand the neural information encoded in a skin conduc-
tance signal, it is necessary to decompose it into its constituent
components. We model the fast variations using a second order
differential equation incorporating a sparse impulsive input
to the model. Furthermore, we model the tonic component
with several cubic basis spline functions. Finally, we develop
a block coordinate descent approach for skin conductance
signal decomposition by employing generalized-cross-validation
for balancing between smoothness of the tonic component, the
sparsity of the neural stimuli, and residual error. We analyze
experimental and simulated data to validate the performance
of the proposed approach. We successfully illustrate its ability
to recover the neural stimuli, the underlying physiological
system parameters, and both tonic and phasic components. In
summary, we develop a novel approach for decomposition of
phasic and tonic components of skin conductance signal using
a generalized-cross-validation-based block coordinate descent
approach. Recovering the underlying neural stimuli and the
tonic component accurately could potentially improve cognitive-
stress-related arousal states estimation for better stress regula-
tion in mental health disorders.

I. INTRODUCTION

According to the study by Walker et al. [1], 14.3% of
deaths worldwide are attributable to mental health-related
disorders. Identification of problematic patterns of emotional
regulation could potentially help characterize psychiatric
disorders [2]. Different physiological signals such as elec-
troencephalogram, heart rate, respiration, and electrodermal
activity (EDA) could be utilized to identify problematic
patterns of emotional regulation [3]. Hence, a personalized
mental health monitoring wearable system based on various
physiological signals could eventually lead to effective reg-
ulation of mental health-related problems [4].

Any activity related to changes in the electrical characteris-
tics of the epidermis is known as the EDA. Skin conductance
(SC), a measure of EDA, is defined as the conductance
measured across two distant points in the epidermis in the
presence of salty sweat secretions produced by different
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eccrine sweat glands [5]. Depending on the physiological
need, the autonomic nervous system (ANS) stimulates sweat
glands to produce sweat which changes the conductivity of
the epidermis [5], [6], [7]. These changes in conductivity
can be analyzed to understand the underlying ANS activity,
especially the sympathetic nervous activity, which contains
a great deal of information about human arousal [8].

SC can be modeled as a summation of two components
[5], [6], [7]. The relatively slow varying component, which
is called the tonic component, is generally dependent on
the thermoregulation of the body, ambient temperature, and
humidity. This tonic component also contains information
about the general arousal of a person [5]. On the other
hand, the comparatively fast varying component, which is
called the phasic component, is a reflection of neural stim-
ulation from the sympathetic nervous system, a part of the
autonomic nervous system (ANS) [5]. Hence, EDA can be
represented as the sum of two convolution operations: (1) a
sparse sympathetic nervous system brain activity and a fast
physiological smoothing system, (2) a periodic activation and
a slow physiological smoothing system.

Many SC decomposition strategies have been proposed by
different researchers to recover the timings and amplitudes
of neural stimulation as well as to estimate the underlying
physiological parameters. Benedek et al. [7] proposed a non-
negative deconvolution scheme called LedaLab for SC time
series to separate them into discrete SC responses. However,
this method leads to a non-sparse solution for neural stimuli
which may overfit the noise. Moreover, their decomposi-
tion scheme does not include individual differences in the
modeling of the physiological system parameters. Greco et
al. [9] proposed a quadratic programming based decomposi-
tion approach called cvxEDA for SC while considering the
sparsity condition in neural stimuli. However, the manual
selection of the regularization parameter for imposing the
sparsity constraint makes it challenging to find an appropriate
sparsity level for the neural stimuli. Studies in [10], [11],
[12] proposed coordinate descent deconvolution approaches
to account for the individual differences in the physiological
system parameters, but do not solve for the tonic component.

In the present study, we propose an algorithm to recover
the ANS neural stimuli, the underlying physiological system
parameters, and the tonic component from observed SC
sampled data. Inspired by the work carried out by Faghih
et al. [10], [13], [14], [15], [16] and Greco et al. [9], we
use a second order differential equation model to relate



SC to the internal unobserved neural stimuli and model
the tonic component with a set of cubic basis-spline (B-
spline) functions. We propose a block coordinate descent
approach to recover the unknowns by incorporating sparse
recovery for the neural stimuli and the interior-point method
for the physiological system parameters and the tonic compo-
nent estimation. Moreover, we implement generalized-cross-
validation (GCV) to obtain regularization parameters for both
the l1-norm and l2-norm penalization terms in each iteration
of the block coordinate descent approach. Finally, we analyze
both experimental and simulated skin datasets to show the
performance of our proposed approach.

II. METHOD

A. Experiment

In this study, we use the SC responses to loud sounds,
simultaneously recorded from palm, fingers and foot data
[17]. The experiment was performed to study and model
event-related SC responses. Details of the experiment are
provided in [18]. We use the SC recording from the middle
phalanx of the dominant hands of two female and two male
subjects. The sampling frequency for this data set is 100 Hz.
Usually, the sampling frequency is kept much higher than the
SC signal bandwidth to avoid aliasing from high frequency
noise sources.

B. Model Formulation

The SC signal can be represented combining the phasic
and tonic components as follows:

y(t) = yp(t) + ys(t)

where y(t), yp(t) and ys(t) represent the SC signal, and the
phasic and tonic components, respectively.

1) Phasic Component: The phasic component can be
considered as a smoothed version of neural spiking activity
from the brain. We model this smoothing filter using the first
order diffusion kinetics of sweat from the sweat ducts to
the strata cornea and subsequent evaporation from the strata
cornea [6], [7], [5]. We can combine both kinetics and use
the following second order differential equation including
the stimulation from sudomotor u(t) to describe the phasic
component in the sweat glands:

τrτd
d2yp(t)

dt2 + (τr + τd)
dyp(t)

dt + yp(t) = u(t) (1)

where u(t), τr and τd represents the neural stimuli gener-
ated by the sympathetic nervous system, the rise and decay
times for each SC response, respectively. As the number of
impulses in the neural stimuli is very small compared to the
number of samples in the discrete signal, we can consider
the neural stimuli as a sparse signal in our analysis similar
to [11]. By letting Tu be the sampling frequency of the
neural stimuli, similar to [10], [13], [14], [15], [11], [12],
we define an abstract definition of u(t) as the summation
of weighted and shifted impulse functions, i.e., u(t) =∑N−1
i=0 uiδ(t−iTu), where ui represents the amplitude of the

neural stimulus from ANS at time iTu. N is the number of
samples in the discrete form of u(t) and can be written as a
function of the duration of the recorded signal Td (N = Td

Tu
);

ui is zero if there is no neural impulse or any positive value
if there exists an impulse at time instance iTu.

In order to obtain a solution to the system equation, we
assume that initially the sweat duct is empty similar to
[5], [10], [11], [12]. Hence, the solution to the differential
equation becomes,

yp(t) = yp(0)e
− t
τd + h(t) ∗ u(t) (2)

where h(t) refers to the system response and can be repre-
sented as a scaled version of the Bateman function. Here, the
operator ‘∗’ represents the convolution operation. h(t) can
be written as follows,

h(t) =

{
1

τr−τd (e−
t
τr − e−

t
τd ) ; if t ≥ 0

0 ; otherwise
(3)

2) Tonic Component: We model the tonic component as
a summation of series of P shifted and weighted cubic B-
spline functions [19]. We can write it as follows,

ys(t) = ψ(t) ∗ q(t) (4)
where ψ(t) represents the cubic B-spline function and q(t) =∑P−1
j=0 qjδ(t − (j − 1)∆s) is an abstraction of the tonic

component coefficients representing the scaling and shifting
of the cubic B-spline functions. ∆s is the knot size of the
cubic B-spline basis function which is an indicator of the
smoothness of the tonic component. We select ∆s = 6
seconds for our analysis which is the same as the maximum
value of the decay time that we allow in this study. We
specifically select this value to allow a small increase in
the tonic component during a phasic response [5]. We take
P =

⌈
Td
∆s

⌉
+ 5 for our analysis. Here we include 5 extra

cubic spline waves to consider the tonic components outside
the signal duration. As the tonic component is very slow in
nature and also as we are modelling it with cubic B-spline
waves, the tonic component for a time instance is dependent
on the several neighboring coefficients qj . To effectively
describe the tonic component at the beginning and at the
end of the signal we consider these extra 5 knots.

3) Discrete Model: If the signal is periodically measured
with an sampling period of Ty for M measurements, we can
define the discrete observation equation for SC data yk as
follows:

yk = yp(kTy) + ys(kTy) + νk (5)

where k = 1, 2, · · · ,M and νk is the measurement noise. We
model νk as a Gaussian random variable. Using the sampled
SC data yk, we would like to estimate system parameters
τr and τd, and recover the tonic driver q(t) and the neural
stimuli u(t) from ANS, i.e., amplitudes and timings of the
impulses from ANS. The solution for yk is as follows:

yk = akyp0 + bku︸ ︷︷ ︸
phasic

+ ckq︸︷︷︸
tonic

+νk (6)

where ak = e
− kTyτd , bk =

[
h(kTy) h(kTy −

Tu) · · · h(Tu) 0 · · · 0︸ ︷︷ ︸
N− kTyTu

]>
, ck =

[
ψ(kTy +

∆s) ψ(kTy) ψ(kTy − ∆s) · · · ψ(Tu − ∆s)
]>

;
u = [u1 u2 · · · uN ]> represents a sparse vector (i.e.,
a limited number of the elements are non-zero) containing



all the input neural stimuli amplitudes over the entire sig-
nal duration and q = [q1 q2 · · · qN ]> represents all
the coefficients of the cubic B-spline basis functions; yp0
represents the unknown initial value of the phasic com-
ponent. Let y = [y1 y2 · · · yM ]>, τ = [τr τd]

>,
Aτ = [a1 a2 · · · aM ]>, Bτ = [b1 b2 · · · bM ]>,
C = [c1 c2 · · · cM ]>, and ν = [ν1 ν2 · · · νM ]>.
Here, Ty is always an integer multiple of Tu. Now the
sampled data vector y is related to the sparse vector u rep-
resenting the neural stimuli through the following equation:

y = Aτyp0 + Bτu︸ ︷︷ ︸
phasic

+ Cq︸︷︷︸
tonic

+ν. (7)

C. Estimation

We filter the signal using a low pass filter with a cut off
frequency of 0.5 Hz to discard the high frequency noise
as the SC signal is known to be band limited to 0.5 Hz
[20], [12], [11]. Then, we downsample the filtered signal
to achieve 2 Hz sampling frequency; hence, the sampling
period for the SC signal Ty = 0.5 seconds. We let the
sampling period for the neural stimuli Tu = 0.25 seconds
to obtain a higher time resolution estimate of the input. In
order to estimate the unknowns u, τ and q, using equation
(7), we formulate the following optimization problem while
assuming the sparsity constraint on u and including the
constraint that the tonic component is always less than or
equal to the SC signal (i. e., Cq ≤ y):

min
u,τ ,q

τmin≤τ≤τmax

u≥0,||u||0�N
Cq≤y

J(u, τ ,q) = 1
2 ||y − Aτyp0 − Bτu− Cq||22 + λ1||q||22

(8)
where τmax and τmin are the upper and lower bound of
the physiological system parameters. Here, we include the
l2-norm penalization term with regularization parameter λ1

to avoid over-fitting while solving for the tonic component
coefficients q. The above optimization formulation is a sparse
recovery problem as ||u||0 � M < N . We encourage the
sparsity for u with lp-norm (0 < p ≤ 2) regularization as a
relaxation to the l0-norm. We can re-write the optimization
problem as follows:

min
u,τ ,q

τmin≤τ≤τmax

u≥0,Cq≤y

J(u, τ ,q) =
1

2
||y− Aτy0 − Bτu− Cq||22

+ λ1||q||22 + λ2||u||pp (9)

We can solve the inverse problem of finding a nonnegative
u in (9) with a specific sparsity level using the iterative least
squares (IRLS) approach Focal Underdetermined System
Solver (FOCUSS+) algorithm [21]. In each iteration of the
IRLS algorithm, we use GCV for estimating an appropriate
regularization parameter λ2 similar to [15], [14], [10], [11].
We also use GCV to obtain λ1 similar to [22].

In order to solve for the physiological system parameters
τ and the initial phasic SC condition yp0 , we solve the opti-
mization problem in (9) using the interior-point method. We
concatenate yp0 with τ to consider it as a third parameter and

define θ = [τ> yp0 ]>. To estimate all the unknowns, we
implement the following block coordinate descent algorithm
using the optimization formulation in (9):

Algorithm: Generalized-Cross-Validation-Based Block
Coordinate Descent

(a) Let j = 0. Initialize θ̃
0

by sampling a uniform random
variable on [0.10, 1.5] for τ̃ (0)

r , on [1.5, 6] for τ̃ (0)
d , and on

[0, y1] for yp0 ; also initizalize q̃0 by sampling P number
of Gaussian random variables with mean 0.1 and standard
deviation of 0.02.
(b) Set j = j + 1.

(c) Set θ = θ̃
(j−1)

and q = q̃(j−1); use FOCUSS+ [21]
to solve the inverse problem in (9) to find the stimuli ũ(j)

by initializing ũ(j−1) at a vector of all ones.

(d) Set u = ũ(j) and q = q̃(j−1); use the interior point
method to minimize the optimization problem in (9) to
solve for θ̃

(j)
by initializing the optimization problem at

θ̃
(j−1)

.

(e) Set θ = θ̃
(j)

and u = ũ(j); use the interior point
method and minimize the optimization problem in (9) to
solve for q̃(j) by initializing the optimization problem at
q̃(j−1).

(f) Repeat between steps (b)-(e) until j = 30.

(g) Let i = 0. Set θ̂
0

= θ̃
(j)

, û0 = ũ(j), and q̂0 = q̃(j).

(h) Set i = i+ 1.

(i) Set θ = θ̂
(i−1)

and q = q̂(i−1); use GCV-FOCUSS+
[23] to solve the inverse problem in (9) to find the stimuli
û(i) by initializing at û(i−1).

(j) Set u = û(i) and q = q̂(i−1); use the interior point
method to minimize the optimization problem in (9) to
solve for θ̂

(i)
by initializing at θ̂

(i−1)
.

(k) Set θ = θ̂
(i−1)

and u = û(i−1); use GCV [22] to
obtain λ2, and use the interior point method to minimize
the optimization problem in (9) to solve for q̂(i) by
initializing at q̂(i−1) .

(l) Iterate between (h)-(k) until convergence.

We run the algorithm for several random initial values of
system parameters. Finally, we choose the estimated values
that minimize ||y − Aτyp0 − Bτu− Cq||22.

III. RESULTS

Using the proposed approach, we decompose the SC
measurements collected during an auditory stimulation ex-
periment and separate the tonic and phasic components.
Furthermore, we recover the underlying stimuli u(t), the
corresponding rise time (τr), decay times (τd), and the initial
phasic SC condition yp0 . Results in Figure 1 show that
the proposed algorithm successfully estimates the tonic and
phasic components along with the timings and amplitudes of
neural stimuli for two female participants (subject ID: 12 and
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Fig. 1. Estimated Decomposition of the Experimental SC Signals for Two Female and Two Male Participants: In each of the panels, i) the top
sub-panel shows the experimental SC signal (blue stars), the reconstructed SC signal (red curve), the estimated tonic component (green curve), and the
timings of the auditory stimulations (gray vertical lines); ii) the bottom sub-panel shows the estimated phasic component (blue curve), estimated neural
stimuli timings and amplitudes (black vertical lines) due to ANS activation and the timings of the auditory stimuli (gray vertical lines).
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Fig. 2. Performance Comparison of Proposed Approach with Existing
Approaches for Simulated Data: Each panel shows the decomposition
performance based on simulated SC signal with 25 dB noise. The top,
middle, and bottom panel shows the result using LedaLab [7], cvxEDA
[9], and our proposed approach, respectively. In each panel, blue stars
represent the simulated data, red vertical lines represent the ground truth
neural stimuli, black vertical lines represent the recovered neural stimuli,
the green curve represents the tonic component, the black dotted curve
represents the ground truth for tonic component, and the red curve represents
the reconstructed signal.

15) and two male participants (subject ID: 11 and 26) [17].
The underlying rise times are 1.276 seconds, 1.048 seconds,
1.029 seconds, and 0.8716 seconds while the decay times
are 2.324 seconds, 3.792 seconds, 4.372 seconds, and 3.8310
seconds, respectively. We have considered the signal segment
from 200 seconds to 400 seconds for our analysis. Figure 1
shows that we were able to detect the ANS activation after
each auditory stimulation.

The multiple correlation coefficient (R2) has been cal-
culated for all the four reconstructed signals. The R2 values
are 0.9953, 0.9964, 0.9921 and 0.9926, respectively. The high
values of R2 SC data suggest that our proposed algorithm can
successfully uncover physiologically plausible ANS stimula-

tion and separate the tonic and phasic components. The run
times for deconvolution are 455.73 seconds, 971.15 seconds,
1186.3 seconds and 994.91 seconds, respectively.

To verify our approach and to compare our method with
the other existing approaches, we use synthetic simulated
data. We use the synthetic neural stimulation, the physiolog-
ical parameters, and the cubic-spline coefficients to simulate
the data. The physiological parameters are chosen to be 0.7
seconds for the rise time and 2 seconds for the decay time
based on the assumption in previous studies [9], [7], [5]. We
add Gaussian random noise with 25 dB SNR with respect to
the phasic component. Figure 2 shows the decomposition
of tonic, phasic component, and recovered neural stimuli
using LedaLab [7], cvxEDA [9], and our proposed approach.
The results show our algorithm is outperforming other the
existing algorithm. As observed in Figure 2, LedaLab and
cvxEDA are providing less sparse solutions compared to
the ground truth. Some of the pulses detected by these
algorithms are capturing noise. On the other hand, our
proposed approach is performing well in balancing between
the sparsity level and discarding noise. Furthermore, the
previous approaches do not perform deconvolution to be able
to recover the system parameters. In running the LedaLab
and cvxEDA algorithms, we set the system parameters to
the values used for simulating the data. In our approach, we
are able to recover the system parameters; hence, we estimate
the system parameters and obtain the rise and decay times
with errors of 1.14% and 7.83%, respectively.

IV. DISCUSSIONS

Decomposition of SC signals and identifying the neural
stimuli along with the rise and decay times of the SC
responses is a challenging problem. The optimization formu-



lation in (8) has many degrees of freedom which could result
in identifiability problems. There exist many solutions for the
unknowns that can closely approximate the sampled signal.
However, incorporating sufficient physiologically plausible
constraints can make this problem more tractable. Firstly,
we consider the sparsity constraint on the neural stimuli.
Secondly, we constrain the physiological system parameters
within physiologically feasible bounds (τmin = [0.10 1.5]>

and τmax = [1.5 6]>) [11]. We also impose constraints
on the smoothness of the cubic B-spline basis function by
including l2-norm penalization. Finally, we incorporate the
GCV technique [22] to have appropriate estimates of λ1

and λ2 to achieve a balance between capturing the data and
residual error.

The proposed optimization problem is non-convex in terms
of physiological system parameters. It is possible to have a
solution that stagnates at a local minima. Also, the tonic
component of the SC data might be captured in the phasic
component and the solution for the rise or decay time could
stagnate in the boundary. To account for that, we initialize
the optimization problem with several random initial values
of physiological parameters and the tonic component. We
discard all the solutions that stagnated to the boundary.
Among the rest, we take the one that minimizes the residual
error.

V. CONCLUSION AND FUTURE WORK

In this study, we have shown a promising method for
decomposition of a SC signal by modelling tonic and phasic
components and formulating an optimization problem to
recover the unknowns with physiologically plausible con-
straints. We have proposed a block coordinate descent ap-
proach to recover the unknowns by incorporating sparse
recovery for neural stimuli, interior-point method for physi-
ological system parameter and tonic component estimation.
Finally, we have implemented GCV to obtain regulariza-
tion parameters for both l1-norm and l2-norm penalization
terms in the optimization problem to avoid over-fitting. Both
experimental and simulated data show that our approach
outperforms previous methods.

The tonic component of SC might vary in different regions
of skin, however, the phasic component is modulated by the
same sparse neural stimuli from ANS [12]. This characteris-
tic of SC can be exploited to obtain a better decomposition
strategy using multi-channel SC data. As future directions,
we plan to develop fast decomposition schemes for tonic and
phasic components from single and multi-channel SC data
to obtain more reliable estimate for real-time applications.
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