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Abstract—Accurate and cost-effective seizure severity tracking
is an important step towards limiting the negative effects of
seizures in epileptic patients. Electroencephalography (EEG)
is employed as a means to track seizures due to its high
temporal resolution. In this research, seizure state detection was
performed using a mixed-filter approach to reduce the number
of channels. We first found two optimized EEG features (one
binary, one continuous) using wrapper feature selection. This
feature selection process reduces the number of required EEG
channels to two, making the process more practical and cost-
effective. These continuous and binary observations were used in
a state-space framework which allows us to model the continuous
hidden seizure severity state. Expectation maximization was
employed offline on the training and validation data-sets to
estimate unknown parameters. The estimated model parameters
were used for real-time seizure state tracking. A classifier was
then used to binarize the continuous seizure state. Our results
on the experimental data (CHB-MIT EEG database) validate the
accuracy of our proposed method and illustrate that the average
accuracy, sensitivity, and false positive rate are 85.8%, 91.5%,
and 14.3% respectively. This type of seizure state modeling could
be used in further implementation of adaptive closed-loop vagus
nerve stimulation applications.

I. INTRODUCTION

Roughly 50 million people worldwide live with epilepsy
and this disease is not localized to a specific age range, and
affects people as early as 3 years old [1], [2]. Seizures are
the defining symptom of this disorder and are characterized
by a period of abnormal synchronous excitation of neurons
in one or both hemispheres that can lead to permanent or
temporary brain damages [3], [4]. During an epileptic seizure,
the patient may undergo a loss of bladder or bowel control,
violent muscle movements, and/or a loss of consciousness [5],
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[6]. Thus, unmannaged seizure symptoms may not only re-
strict epileptic patients from performing activities that require
reliably uninterrupted attention, but can also negatively affect
their daily lives. Medical attention for epileptic patients entails
the use of medicine [7] or vagus nerve stimulation [8], which
requires surgical implementation [9]. Reliable and accurate
seizure severity detection may lead to a reduction in serious
brain injuries and unsafe operating conditions, and may allow
patients to immediately seek medical attention.

Electroencephalography (EEG), the recording of electrical
activity produced by the brain at the scalp [10], has been
proposed as a signal modality for seizure detection due to the
reliable acquisition, high temporal resolution, portability, and
relatively low cost. EEG analysis is typically accomplished
with the use of machine learning algorithms [11], such as
convolutional neural networks [12], [13], recurrent neural
networks [14], [15], spiking neural networks [16], Support
Vector Machines (SVM) [17]–[19], and Linear Discriminant
Analysis (LDA) [20]. These machine learning algorithms
typically result in binary classifications, meaning information
about the seizure severity would be lost. Information about
seizure severity can be used with vagus nerve stimulators to
reduce a subject’s epileptic symptoms by online frequency or
amplitude adaptation [21], [22].

State-space modeling of seizures provides us with continu-
ous estimation, which contains information about the severity
of the seizure and can be implemented in a closed-loop vagus
nerve stimulator. In order to improve the feasibility of the
whole process and reduce the potential cost to the end user,
we used an LDA classifier to find two optimized EEG features
to reduce the required number of EEG channels to two for
reliable classification. We then propose a state-space approach
to formulate the hidden seizure tracking problem.

Using the chosen two features (i.e. continues and binary)
and employing a mixed-filter approach, we performed seizure
state detection [23]–[25]. We considered mixed-filters that
manipulate two variables, rather than one, because a single-
feature filter would lose the ability to accurately classify if
the single input feature was noisy, whereas a double-feature
filter would not [26]–[28]. Expectation Maximization (EM)
algorithm was then applied to find the unknown state-space
model parameters [27], [29]. Since our prediction is contin-
uous, rather than only detecting the presence of a seizure,
information about the severity of the seizure is also obtained
[30], [31]. The successful and reliable detection of seizure



activity and its severity allow for closed-loop system design
for vagus nerve stimulation applications. Accurate seizure
detection may also lead to a reduction in the possibility of
serious brain injuries in a closed-loop manner [32]–[35].

II. METHODS AND MATERIALS

A. Data Acquisition

The original data-set (CHB-MIT Scalp EEG Database) was
collected at the Boston Childrens Hospital in 2010 [36]. The
continuous EEG of 22 pediatric subjects (5 males, ages 3-22,
and 17 females, ages 1.5-19) with intractable seizures was
measured for several days following the cessation of anti-
seizure medication with the intent to assess each subject’s
viability for surgical intervention. EEG signal collection was
accomplished using a 21-electrode headset at 256 Hz sampling
frequency. Data was provided in a bipolar montage where each
channel is obtained from two electrodes. Further information
on the original data collection can be found in [36].

B. Feature Extraction

In order to determine the optimum set of features for use
in the detection of a seizure, the EEG data from a single
subject is divided into three data-sets: training set, validation
set, and testing set. The first seizure recorded within the
subject’s collected data is reserved as the training set, the
second recorded seizure is used as the validation set, and all
remaining seizures are included in the testing data-set, which
will be used to test and compare the validity of this process.
The authors would like to note that the proportions are not
analogous to the typical training, validation, and testing data-
set splits seen in machine learning researches. This is due to
the stated desire to minimize the required number of seizures
by the intended end user, thereby ensuring the highest level
of comfort for acquisition of the training and validation sets.

Since we are analyzing data collected between multiple
sessions, the EEG features are normalized by employing
min/max normalization based on the statistical characteristics
of the feature derived from the first minute of each session.
By using only the first minute for normalization, the real-time
applicability of this method is maintained.

An assumption inherent to the filter selected for this research
is that the continuous feature must be monotonic in relation
to the unknown seizure state. Since EEG signal information is
oscillatory in nature, it is not possible for the amplitudes to be
monotonic in relation to the seizure state [37]. For this reason,
EEG band powers are instead chosen as candidate features for
this process.

Each channel is decomposed into the absolute power of four
characteristic EEG band powers: Delta (<4 Hz), Theta (4-
7 Hz), Alpha (8-15 Hz), and Beta (16-31 Hz). The Gamma
band power (31+ Hz) is not included, because this band is
typically contaminated with electromyographic (EMG) data.
These absolute band powers are found by using a Fast Fourier
Transform (FFT) with a sliding window using the one second
interval immediately preceding the desired estimation point.

C. Feature Selection

To find the best continuous and binary features, a wrapper
feature selection is utilized using (i) LDA, a simple linear
computationally-efficient classifier, as the predictive model,
(ii) F1 score as evaluation metric, (iii) greedy forward selection
as the subset selection policy, and (iv) a stopping criteria of
using only one feature [38].

To find the continuous feature, the raw feature values are
converted from amplitude squared to dB to make it always
positive as required by the selected filter. Then, an LDA
classifier is trained on each converted feature of the training
set separately. The LDA classifier is modified so that the
misclassification cost of seizures is set to the proportion of
non-seizures to seizures in the training set, as labeled by expert
clinicians from the original data protocol. This is necessary as
the duration of non-seizure period within each session greatly
outnumbers the duration of the seizure itself. Prospective
converted EEG features from all possible channel and band
power combinations from the validation set are then passed
through the corresponding trained LDA individually and the
resulting arrays are compared to the true seizure states of
the validation set. It is important to note that the use of
the validation set is to find features that are generalizable.
If the features were validated on the training set instead
of the validation set, the feature selection process would
choose features based on overfitting rather than predictivity. To
compare the relative usefulness of each prospective feature, F1
scores are compared rather than absolute accuracy. F1 score is
selected for comparisons due to its emphasis on the effects of
precision and recall, which is represented with the following
equation,

F1 = 2 · precision · recall
precision+ recall

. (1)

The F1 score is chosen instead of accuracy because the
data is highly imbalanced towards non-seizure and using
accuracy alone could lead towards selecting a feature with a
high accuracy for non-seizure periods, rather than for seizure
periods. The feature with the highest F1 score is chosen as the
continuous feature.

The binary feature selection process essentially follows the
same protocol as the method described for the continuous
feature. The raw EEG feature data is then binarized and,
therefore, there is no need for a dB transformation. LDAs
are trained on the training set and validated on the validation
set. The F1 scores based on the validation set are compared
and the highest performing feature is selected. For binarization
of this selected feature, another LDA is trained on both the
training set and validation set (with a misclassification cost
derived based on the true seizure to non-seizure proportion in
the training and validation sets). This LDA is then used to
create binary features for the test set.

An example of this process is provided in Figure 1. This
figure indicates that both the binary and continuous features
have a clear relationship with the true seizure state in that



Fig. 1: Feature Selection. The grey region marks the period of EEG activity designated as the true seizure state. Feature
selected from subject 1 training set.

the binary feature only exists during the seizure, whereas the
continuous feature has much higher activity during the seizure.

D. Mixed-Filter Algorithm

The filter process described here treats seizure status as
a hidden biophysical state in a state-space formulation and
results in a continuous seizure state estimation. A continuous
state estimation, in addition to providing information as to
the presence of a seizure, also provides information about the
severity of a seizure. Further reasoning behind the decision
to choose this filter in tracking the subject-specific continuous
seizure state is based on the filter’s success in incorporating
both binary and continuous features in order to estimate a
hidden state [26]. If only one feature is used for prediction,
noise in that feature would lead to poor performance generally.
With at least two features, a single noisy channel doesn’t
necessarily prevent accurate prediction. The following presents
a mathematical formulation for the mixed-filter algorithm.

We first assume that the model of the continuous seizure
state, xk, can be represented as the following first-order auto-
regressive process [33], [39]–[43],

xk = ρxk−1 + νk (2)

where 0 < ρ < 1 represents an unknown forgetting parameter
and νk is an independent Gaussian random variable represent-
ing the process noise, i.e. νk ∼ N (0, σ2

ν), where σ2
ν is the

unknown variance of the process noise. Let,

x = [x0, x1, · · · , xK ] (3)

be the unobserved state vector. Our observation model for
the continuous feature will be using power, rk (amplitude
squared), of a frequency band power. In order to make rk
unbounded, as required by our filter, we converted it from
amplitude squared to dB by taking 10 · log(rk) to form zk,
where α and β are unknown parameters and εk is an inde-
pendent Gaussian random variable, i.e. εk ∼ N (0, σ2

ε), where
σ2
ε is the unknown variance of the continuous measurement

noise.
We assume that the binary variable, nk, can be represented

by the Bernoulli probability model:

Pr(nk|xk) = (pk)
nk(1− pk)1−nk . (4)

The binary variable nk (derived from the raw amplitude
squared EEG data) is selected using the process described in
section II-C. The observation model is defined as:

pk =
eµ+xk

1 + eµ+xk
. (5)

This choice of a logistic function for this specific filter design
is that the probability function, p, should be bounded between
zero and one. The parameter µ is estimated for each subject
individually and from chance probability, pchance, as described
in [26], [44]. The chance probability used within this model
is selected as the training set and validation set duration of
seizure divided by the total duration of the combined sessions.
In order to get the continuous seizure state predictive model,
we employ the EM algorithm on the combined training set and
validation set for the optimization of the unknown state-space
parameters:

θ = (ρ, α, β, σ2
ν , σ

2
ε , x0). (6)

The EM process is an iterative method that finds the
maximum likelihood of θ by alternating between expectation
and maximization steps. During the expectation stage, the
algorithm creates a log-likelihood function using initial values
of the parameters. The maximization stage finds parameters
that maximize this log-likelihood function [23], [27]. These
parameters are then used to reformulate the log-likelihood
function in the next expectation stage. The process repeats
until the parameters converge to constant values. The EM
algorithm is as follows:

1) Expectation Step: At (l+1)th iteration of the algorithm,
we compute the expectation of data log likelihood in the
estimation step given selected continuous and binary features
and θ(l), which contains the parameter estimates from lth

iteration.
a) Forward Filter: We estimate seizure severity state

variable, xk|k and its variance σ2
k|k, given θ(l), using a recur-

sive non-linear filter algorithm [26], [45]. Notation k|j denotes
the expectation of the state variable at k given the responses
up to j.

xk|k−1 = ρ(l)xk−1|k−1 (7)

σ2
k|k−1 = ρ(l)2σ2

k−1|k−1 + σ2(l)
ν (8)

Ck = (β(l)2σ2
k|k−1 + σ2(l)

ε )−1σ2
k|k−1 (9)



xk|k = xk|k−1 + Ck

[
β(l)(zk − α(l)

− β(l)xk|k−1) + σ2(l)
ε (nk − pk|k)

]
(10)

σ2
k|k =

[
(σ2
k|k−1)

−1+pk|k(1−pk|k)+(σ2(l)
ε )−1β(l)2

]−1
(11)

for k = 1, · · · ,K.
b) Backward Smoother: Equations (10) and (11) result

in the posterior mode estimates xk|k and its variance σ2
k|k,

respectively. A fixed interval smoothing algorithm [46] is
employed to compute xk|K and σ2

k|K . This algorithm is given
as follows [26]:

xk|K = xk|k +Ak(xk+1|K − xk+1|k) (12)

Ak = σ2
k|k(σ

2
k+1|k)

−1 (13)

σ2
k|K = σ2

k|k +A2
k(σ

2
k+1|k − σ

2
k+1|K) (14)

for k = K−1, · · · , 1 and initial conditions xK|K and σ2
K|K .

c) State-Space Covariance Algorithm: The state-space
covariance algorithm [47] is utilized to estimate the covariance
σk,u|k as follows [26]:

σk,u|k = Akσk+1,u|k (15)

for 1 ≤ k ≤ u ≤ K.
Moreover, the variance and covariance terms, Wk|K and

Wk−1,k|K are computed as follows [26]:

Wk|K = σ2
k|K + x2k|K (16)

Wk−1,k|K = σk−1,k|K + xk−1|Kxk|K (17)

2) Maximization Step: The expectation of data log likeli-
hood is then maximized with respect to θ(l+1) as follows [26]:

ρ(l+1) =

K∑
k=1

Wk−1,k|K

[ K∑
k=1

Wk−1|K

]−1
(18)

x
(l+1)
0 = ρx1|k (19)

σ2(l+1)
ε = K−1

K∑
k=1

z2k +Kα2(l+1)

+ β2(l+1)
K∑
k=1

Wk|K − 2α(l+1)
K∑
k=1

zk

− 2β(l+1)
K∑
k=1

xk|Kzk + 2α(l+1)β(l+1)
K∑
k=1

xk|K (20)

α(l+1)

β(l+1)

 =

 K
∑K
k=1 xk|K∑K

k=1 xk|K
∑K
k=1Wk|K

−1  ∑K
k=1 zk∑K

k=1 xk|Kzk

 (21)

σ2(l+1)
ν = K−1

K∑
k=1

[
Wk|K − 2ρ(l+1)Wk−1,k|K + ρ2(l+1)Wk−1|K

]
(22)

During EM estimation process, the seizure prediction
seemed to be following the continuous feature more than the
binary feature. To overcome this issue, the EM algorithm
is modified so that the parameters of observation equation
regarding the continuous feature is frozen after the Pearson
correlation coefficient between the estimated seizure state and
the continuous feature reaches 0.95. In this way, the seizure
prediction better follows both the binary and continuous fea-
tures.

The next step in this process involved applying the parame-
ters and features found with the training set and validation set
in order to track the continuous seizure state in the test set.
In the analysis of this data-set, we use the state parameters
found from the training and validation sets to directly estimate
the continuous seizure state. For this stage, instead of using
both a forward filter and a backward smoother, we solely use
the forward filter to be able to analyze data in real-time. A
backward smoother would not be applicable for analyzing data
in real-time.

E. Binary Seizure Classification

A final LDA is trained using the continuous seizure state
prediction output from the EM algorithm based on the training
set and validation set to output a binary seizure state. The
selected features, state-space parameters, the trained feature
binarization LDA, and the trained seizure state binarization
LDA are then applied to the testing data-set. This process
outputs a binarized form of the seizure state prediction so
that comparisons can be made between the above described
algorithm and past attempts to classify this data-set by other
studies. Specifically, we will be assessing three performance
criteria based on True Positives (TP), True Negatives (TN),
False Positives (FP), False Negatives (FN), and False Positive
Rate (FPR):

Sensitivity =
TP

TP + FN
· 100% (23)

Accuracy =
TP + TN

TP + FN + TN + FP
· 100% (24)

Specificity =
TN

TN + FP
· 100% = 100− FPR (25)

III. RESULTS

An example of our continuous seizure state prediction is
shown in Figure 2. Even though the binary feature failed to
predict a lack of seizure in the 1500 to 2000 ms range, the
model, using both features, still successfully predicted seizure
state during this period. As expected, neither the binary nor



Fig. 2: Continuous Seizure State Estimation. The red curve represents the unitless estimated seizure state and corresponds
to the right y-axis. The black curve represents the unitless normalized continuous feature and corresponds to the left y-axis.
Feature selected from subject 3 test set.

continuous feature alone could outperform the simultaneous
use of both variables. However, the combination of the two
variables together clearly finds a pronounced seizure state that
matches well with the true seizure state. The seizure state
binarization LDA is then applied to the continuous seizure
state output from the EM algorithm for the test set to produce
a binary seizure state prediction. In order to compare this
algorithm to past attempts to classify this data, the accuracy
(Ac), specificity (Sp), and sensitivity (Se) between our binary
seizure state predictions and the true seizure state are calcu-
lated for the testing data-sets of each subject. These results are
presented in Table 1. While comparing statistics on number
of false detections per hour would have been interesting, it
is not considered a legitimate comparison as the length of
each segment this process analyses is significantly smaller,
i.e. 30 seconds compared to 1/256 of a second, and would
consequently have significantly higher false detection rates.

Table I provides a comparison of our results with previous
studies. In [36] and [48], the authors calculated feature vectors
as inputs for an SVM classifier, whereas [49] instead used
an LDA for classification. The feature vectors each created
are also more computationally demanding than our proposed
method, with [36] using temporal and spectral statistics, [48]
employing fuzzy entropy, and [49] calculating wavelet co-
efficients. It is also important to note that all three studies
classify segments of time, rather than predicting in a point-
by-point basis. Additionally, these studies were using the full
range of available electrodes, whereas the proposed algorithm
is detecting based on the information from only two channels.
Finally, all three studies performed binary classification, which
means information regarding the severity of a seizure is lost.

In addition to performance statistics, the proposed algorithm
also provides insight as to the possible focus of the seizure.
While the original data-set did not include any information
as to the focus of the seizure, our results can be compared
against results from a previous study that performed channel
importance analysis. Das et al. [50] employed wavelet analysis
to design channel-specific input vectors for an SVM classifier.
In Table I, the channels that provided the highest specificity
and highest accuracies for subjects 1, 2, and 10 (the only
subjects of the first ten reported by [50]) matched the channels
found by the proposed feature selection process.

The algorithm proposed in this research demonstrates a

feasible real-time channel-minimized method of utilizing a
continuous and binary representation of EEG features for
the detection of epileptic seizure events. The seizure state
prediction is continuous, meaning that, in addition to the
detection of a seizure event, the algorithm also provides
information on the severity of a seizure. Understanding the
severity of a seizure will allow adaptive vagus stimulation
applications as different levels of seizure severity may require
different stimulation amplitudes or frequency adjustments.
Furthermore, following the first two seizures of a specific
subject, this process only uses the information from two
channels so that, following the training and validation stages,
further continuous estimation would need only two channels,
rather than a full array of EEG electrodes. The use of only two
channels would allow for customizable EEG headsets, which
would reduce the cost and improve the comfort of the end
user. Outside of seizure detection, the proposed algorithm also
helps in our understanding of a subject’s epileptic event. The
wrapper feature selection process finds the highest performing
channel/band power combination, which provides information
as to the brain region of focus for the epileptic event.

The primary goal for this detection algorithm is to demon-
strate the feasibility of real-time seizure detection with a
restricted number of channels. The method described in this
research uses a wrapper feature selection process, which
employs an LDA predictive model and compares the resulting
F1 scores of candidate features. The candidate features are the
collection of four band powers for each of the EEG channels.
Two high performing features were found separately and an
LDA classifier was used to transform one feature into a binary
feature. The results for this feature selection process essentially
matched previous results from another study that assessed the
performance of individual channels [50]. Further research is
needed on the application of this algorithm on a data-set where
the true seizure focus is known in order to understand how well
the selected channels match the seizure focus.

The optimized set of a continuous and binary features
was used in a state-space approach. An EM algorithm was
employed to optimize the state-space parameters. The output
of this process is a seizure state predictive model. Using
an online forward filter with the the optimized parameters,
the model outputs a continuous estimation of the seizure
state, which allows for an understanding of both the timing



TABLE I: A Comparison Among Different Studies that Analyzed The Same Data-set. In the performance statistics section,
we compare Accuracy (Ac), Specificity (Sp), and Sensitivity (Se) values of our proposed method to other studies. The best
channels section shows that our selected channels match the highest performing channels of the three subjects reported by [50]
(Das et al. [50] only reported the results for subjects one, two, and ten among the first ten subjects).

Performance Statistics Best Channels
Accuracy Sensitivity Specificity Cont. Bin. Se. Sp. Acc.

Sub. * [48] [49] * [36] [48] * [48] * [50]
1 94 99 94 92.7 100 99 94.1 99 F8-T8 T8-P8 T7-P7 F8-T8 F8-T8
2 75.1 100 80 100 100 100 75.1 100 T8-P8 T8-P8 FT9-FT10 T8-P8 T8-P8
3 82 98 95 91.4 100 97 81.8 98 CZ-PZ P7-O1
4 89.9 97 77 93.3 100 96 89.9 98 F4-C4 FZ-CZ
5 96.8 98 76 98.2 74 98 96.8 98 P4-O2 P8-O2
6 61.1 96 74 78 86 96 61.1 96 F7-T7 FT9-FT10
7 86.6 97 84 84.9 100 97 86.6 97 FP2-F8 F8-T8
8 75.8 96 81 95.3 100 96 74.7 96 CZ-PZ P4-O2
9 96.6 96 88 95.9 100 95 96.6 96 T7-FT9 F3-C3
10 99.6 98 73 85.7 100 98 99.8 96 T7-P7 F7-T7 T8-P8 T7-P7 F7-T7

Avg. 85.8 97.5 82.2 91.5 96 97.2 85.7 97.4

* indicates results obtained through the current study.

and severity of a seizure. To compare our results to past
research that analyzed this data-set, our continuous seizure
estimation was binarized by a final LDA. Our model shows
reasonably comparable performance statistics when compared
against other studies [36], [48], [49]. It is important to note that
all three of the compared studies used all electrodes available
without the stated focus of real-time detection.

Further research may see benefits from focusing improve-
ments in several key aspects: channel count restrictions, type
of features to include, and global seizure state acquisition.
While this particular filter only uses two channels, the specific
area of seizure activity in the brain can produce significant
relationships with more than two channels. It may be a
beneficial to locate all affected channels during the training
stage, rather than a maximum of two, in order to detect a
seizure more accurately. This would increase the number of
necessary channels in a practical application. Another area
where this algorithm could be improved is in using a filter that
uses more than one continuous feature. The filter described
in this research uses a single continuous and single binary
feature, but, as described in the methods section, steps had
to be taken to avoid overfitting to the continuous feature as
the algorithm seemed to favor the continuous feature over
the binary feature. Future filter design could instead take as
inputs two or more continuous features, in addition to the sole
binary feature. If, however, future applications do not require
any form of channel restriction (i.e. due to a reduced cost
in EEG headsets), the above algorithm could use a Kalman
filter to find a global seizure state based on channel-specific
seizure estimations. While this negates the goal of channel-
restriction since information from all EEG channels would
be necessary, the ability to predict in real-time would be
maintained and, by using all channels, it is expected to achieve
higher performance.

The above algorithm has shown that it is indeed possible to
perform real-time seizure detection using EEG with a limited
number of channels to track the continuous seizure state,

which provides us information about the timing and severity of
the seizure. This can be implemented in a closed-loop system
with a frequency or amplitude adaptive vagus nerve stimulator
to help reduce the symptoms of the seizure.
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