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Abstract— Hypercortisolism is associated with tiredness and
fatigue during the day and disturbed sleep at night. Our goal
is to employ a wearable brain machine interface architecture
to regulate one’s energy in hypercortisolism. First, we present
a state-space model to infer a hidden cognitive energy-related
state from one’s cortisol secretion patterns. Particularly, we
consider circadian upper and lower bound envelope curves on
cortisol levels, and timings of hypothalamic pulsatile activity
underlying cortisol secretion as observations. We then use
Bayesian filtering to estimate the hidden cognitive energy-
related state. Finally, we close the loop using a knowledge-based
control approach. In a simulation study based on experimental
data, we illustrate the feasibility of designing a wearable
brain machine interface architecture for energy regulation in
hypercortisolism. In this architecture, we infer one’s cognitive
energy-related state seamlessly rather than monitoring the
brain activity directly and close the loop using fuzzy control.
This simulation study is a first step towards the ultimate goal
of managing hypercortisolism in real-world situations.

I. INTRODUCTION

Cortisol, a glucocorticoid hormone, is released in pulsatile
manner [1], [2]. Abnormal secretion of cortisol can lead to
irregular daily energy patterns [3]. An example is hypercorti-
solism, a disorder caused by excessive levels of cortisol. Pa-
tients with hypercortisolism (e.g., Cushing’s disease) suffer
from tiredness and fatigue during the day, while experiencing
disrupted sleep at night [4], [5], [6]. Other symptoms associ-
ated with hypercortisolism include thirst, muscle weakness,
obesity, high blood pressure, high sugar level, and sleep
disorders [7], [8], [9]. Moreover, elevated cortisol levels are
related to depression and psychiatric disorders [10], [11],
[12]. Although Cushing’s disease is occasionally treated by
surgery, medical therapy is sometimes unavoidable due to the
delayed or unsuccessful surgery [13], [14]. Furthermore, in
case of early detection of this disease, there are medications
that can be efficiently used for treatment [15], [16], [17].

Given that cortisol secretion plays an crucial role in
regulating one’s energy level, we relate the hidden cognitive
energy-related state to one’s Corticotropin-releasing hormone
(CRH) secretion patterns using a state-space approach [18].
To treat hypercortisolism disease, we consider medications
that can both decrease and increase cortisol levels [15],
[16]. Our main objective here is to design a wearable brain
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machine interface architecture [19] to control cortisol levels
and achieve energy regulation.

In this regard, we first present a state-space model to
infer a hidden cognitive energy-related state from one’s CRH
secretion patterns [18]. We then use Bayesian filtering for the
state estimation process [20]. Finally, by simulating med-
ication dynamics and employing knowledge-based control
approaches, we close the loop in our proposed architecture
[19]. We take advantage of the flexibility and knowledge-
based nature of the fuzzy logic [19], [21] in designing
control and close the loop. In this closed-loop architecture,
the estimated cognitive energy-related state is the input to
the controller, and the required medication timing and dosage
(actuation policy) are the control outputs. Compared to brain-
machine interface architectures, which collect brain signals
directly, the wearable brain machine interface architecture
here utilizes non-brain physiological signals [22], [23] to
infer neural activity [24], [25]. The envisioned wearable
brain machine interface architecture presented in Figure 1
(i) collects data from a wearable cortisol sensor, (ii) infers
the underlying brain activity, (iii) models circadian upper
and lower bound envelope curves on cortisol levels, (iv)
estimates a hidden cognitive energy-related state, (v) models
actuation dynamics, and (vi) designs closed-loop control
for medication timings and dosage to regulate energy in
hypercortisolism.
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Fig. 1. Wearable Brain Machine Interface Architecture. A wearable
device measures cortisol data from the human in the loop. Then, a decoder
estimates the cognitive energy-related state based on brain secretion times
that result in cortisol secretion as well as upper and lower cortisol envelops
generated using an offline expectation maximization algorithm. Finally,
based on drug dynamics and a personalized target level, the controller
regulates the energy-related state by suggesting proper medication usage.
The dashed lines and boxes depict the offline processes.

In this study, we first simulate multi-day cortisol data
based on experimental values in the literature [26], [27].
Specifically, we simulate cortisol profiles in both healthy
subjects and patients who suffer from Cushing’s disease. We
then present a model to simulate CRH secretion events. Next,
we estimate the hidden cognitive energy-related state using
Bayesian filtering. Then, we simulate medicine dynamics and



implement fuzzy control structure. Finally, we present our
closed-loop results. In particular, we consider one open-loop
(i.e. a healthy subject) and two closed-loop scenarios (i.e.
Cushing’s patients with and without circadian rhythm in their
cortisol profiles) for our analysis.

II. METHODS

A. Data Simulation
Due to the lack of multi-day experimental data for both

healthy subjects and Cushing’s patients, following [18], [26],
[27], we simulate cortisol profiles for a healthy subject and
two patients with Cushing’s disease.

1) Healthy: We simulate the cortisol profile using gamma
distribution for the pulse inter-arrival time and Gaussian
distribution for the pulse amplitudes. The corresponding
parameters for gamma distribution are α = 54, β =
39. The pulse amplitude follows a Gaussian distribution
Hk ∼ N (µk, k
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µk. We consider a second-order stochastic differential

equation to simulate diurnal cortisol patterns [28]. To do so,
we use 0.0751min−1 and 0.0086min−1 for cortisol infusion
and clearance rates based on the median rate parameters [28].

2) Cushing’s patient without circadian rhythm: Following
[26], [29], inter-arrival times and the amplitudes of the pulse
occurrences can be assumed to be 59±11 min and 38±2.5
µgdL−1 min−1, respectively. Considering above parameters
as means and standard deviations in Gamma and Gaussian
distributions [18], we simulate data for a Cushing’s patient
without a circadian rhythm.

3) Cushing’s patient with circadian rhythm: In some
Cushing’s patients, there exists circadian rhythm in their
cortisol profile [29]. Compared to the other two cases, we
employ µk = 38.5 + 1.93 sin
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Gamma inter-arrival distribution to simulate data for a Cush-
ing’s patient with a circadian rhythm.

Assuming a vector input of pulse timings and amplitudes,
we follow the solution of coupled differential equations in
regulating the secretion of cortisol outlined in [27], [28],
[30] to obtain serum cortisol profiles over five days for each
simulated data-set.

B. State Estimation
Considering the simulated cortisol profile as the observa-

tion, the next step is to infer hidden cognitive energy-related
state for our further analysis. We do this task using the state-
space approach [18], [31]:

xk = ρxk−1 + uk + εk + Ik, (1)

where xk is the hidden energy-related state, uk is the control
input, εk ∼ N (0, σ2

ε ) is the process noise and Ik is the
forcing function that keeps the energy variations during
wakefulness and sleep in a 24 h period at k-th time step
[18]:

Ik =

2∑
i=1

mi sin
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)
+ ni cos
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)
, (2)

where the coefficients mi and ni are estimated using the
Expectation Maximization (EM) algorithm presented in [18].
The corresponding parameters in (2) are presented in Table
I.

TABLE I
PARAMETERS USED TO GENERATE FORCING FUNCTION Ik IN (2) .

Profile m1 n1 m2 n2

Healthy 0.00531 0.00192 0.00031 −0.00636
Cushing’s without circadian 0.00934 −0.00048 0.00359 −0.00610

Cushing’s with circadian −0.00194 −0.00086 0.00121 0.00059

We model presence or absence of the CRH pulses using
the Bernoulli distribution:

P (ck|pk) = pckk (1− pk)1−ck , (3)

where pk is computed by the following logistic relationship:

pk =
1

1 + e−(γ0+γ1xk)
. (4)

This model relates the probability pk of observing a CRH
pulse event ck to the energy-related state xk through person-
specific baseline parameters γ0 and γ1. In order to estimate
xk, we use the upper and the lower bound envelopes of
the blood cortisol measurements. We label these two upper
and lower bound envelopes as Rk and Sk, respectively. We
assume that there exists a linear relationship between these
envelopes and the corresponding state xk:

Rk = r0 + r1xk + vk, (5)
Sk = s0 + s1xk + wk, (6)

where vk ∼ N (0, σ2
v), wk ∼ N (0, σ2

w), and r0, r1, s0, s1
are regression coefficients that are driven by EM algorithm
[18].

Taking the CRH pulse event ck, the upper and lower
envelopes Rk and Sk as the observations, we follow the
Bayesian filtering approach [32] to estimate hidden cognitive
energy-related state xk.

Prediction step:

x̂k = ρxk−1 + Ik, (7)
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Since pk, which is presented in (10), is related to the xk as
noted in (4), xk is present on both sides of (10). Hence,
Newton’s method is employed to solve update equations.
Consequently, the hidden cognitive energy-related state is
estimated.



C. Drug Dynamic Parameter Estimation and Control Design

After estimating the cognitive energy-related state, the next
step is to design the control algorithm for closing the loop.
Based on the simulated data and studies in [13], [33], [34],
we consider that two different types of medications: one for
regulating the energy level for daily activity (i.e. excitation
effect), and one for helping subjects to sleep well at night
(i.e. inhibition effect). This results in the cognitive energy-
related state to have a desired circadian rhythm. In this part,
based on the known medications’ responses, we simulate
their dynamics to include them in the control design process
and close the loop.

1) Drug Dynamic Parameter Estimation: In order to
simulate the effect of medications, we use a second-order
state-space representation:[

ż1(t)
ż2(t)

]
=

[
−θi1 0
θi1 −θi2

] [
z1(t)
z2(t)

]
+

[
η
0

]
q(t), (12)

where i = 1, 2 denotes the type of medication/actuation that
is supposed to be used for regulating the circadian cortisol
rhythm. θi =

[
θi1, θi2

]
denotes the infusion and clearance

rates for each medication i, respectively. In the state-space
representation, q(t) = q∗i δ(t − τ∗i ) is the actuation input
signal where the parameters τ∗ and q∗ describe the time
and the dosage of the corresponding drug [28], [35]. The η
term also determines if the actuation should be excitatory
(i.e. η = +1 for elevating the cortisol level) or inhibitory
(i.e. η = −1 for lowering the cortisol level). Solving the
state-space equation (12) and considering the output equation
y(t) = z2(t), we derive the output at each time step j as:

yj = ajy0 + bjq. (13)

where aj = e−θi2j and bj = θi1
θi1−θi2

[
(e−θi2j −

e−θi1j) (e−θi2(j−1) − e−θi1(j−1)) · · · (e−θi2 −
e−θi1) 0 · · · 0︸ ︷︷ ︸

N−j

]′
; the vector input q consists of one

non-zero element (i.e. q = [q1 · · · qN ], where qj = 0, ∀j
except the one element q∗i at time τ∗i ). Considering the
output for whole time horizon N , we form the vector
representation y as:

y = Aθy0 + Bθq, (14)

where y =
[
y1 y2 · · · yN

]′
, Aθ =[

a1 a2 · · · aN
]′

, Bθ =
[
b1 b2 · · · bN

]′
.

Given that in our formulation q has only one non-zero
element, we consider the constraint ||q||0 = 1 in the pa-
rameter estimation process. To find the optimum medication
dynamics and dosage parameters, we solve the following
optimization problem:

min
θi,q
||q||0=1

J =
1

2
||y− Aθy0 − Bθq||22. (15)

Consequently, given y we find the optimal Aθ, Bθ (i.e.
contain θi), and q to derive the actuation dynamics [36]. Em-
ploying the actuation dynamics, the control system decides
the dosage and the time of desired medicine.

2) Control Design: Fuzzy logic is an intelligent approach
and a powerful bridge from the expert inference to the real
world [21]. In fact, fuzzy control systems employ knowledge
about the system and the actuation mechanism to perform
inference and make real-time decisions [19]. Each fuzzy
control system consists of four main parts: fuzzifier, rule
base, inference engine, and defuzzifier. Using fuzzification,
the system translates the linguistic input variables to the crisp
values. By forming the comprehensive rule base, all the cases
will be covered [37]. Consequently, rule base enables us to
impose all required constraints in the control design process.
Employing the inference engine, fuzzy output will be gener-
ated in real-time. The very last part is defuzzification which
converts the fuzzy output to the actual control decision. In
this specific problem, the input of the fuzzy control system is
the estimated cognitive energy-related state, while the control
output is the time and the dosage of the required medicine.

Analyzing the simulated cortisol profiles, we need to
regulate the energy-related state in two stages: first stage is
day time regulation of energy to help a subject have enough
energy for daily activity, and the second stage is night time
regulation of energy to help the patients sleep well. As a
result, we set to have two control inputs per day: one in
the morning which increases cortisol levels (elevated energy
during the day), and one in the evening that lowers cortisol
levels (uninterrupted sleep at night). We generate rule base
and membership functions of the fuzzy controller using the
insight about the system which is generated in simulations.
The corresponding membership functions are presented in
Figure 2.

Fig. 2. Input and Output Membership Functions. The top-panel shows
the input membership functions (i.e. estimated energy-related state). The
bottom-panel shows the membership functions for the output (i.e. control
signal uk). The abbreviations P, N, Z, S, M, and B stand for “Positive,”
“Negative,” “Zero,” “Small,” “Medium,” and “Big”, respectively.

As observed in this figure, we create three membership
functions for the input and seven membership functions for
the output values to cover all conditions in the rule base. We
form rules such as:
• If the estimated energy state is low, and the time is early

in the morning then control is positive big;
• If the estimated energy state is high, and the time is early

in the morning then control is positive small;
• If the estimated energy state is medium, and the time is

early in the morning then control is positive medium;
• If the estimated energy state is high, and the time is early

in the evening then control is negative big.
In our proposed fuzzy controller, we use Mamdani inference
engine [38] and centroid defuzzification method [37].



Fig. 3. Simulated Energy Regulation Results. Panel A displays the open-loop results. Panel B shows closed-loop results for the Cushing’s patients
without circadian rhythm, while panel C shows closed-loop results for the Cushing’s patients with circadian rhythm. In each panel: the top sub-panel shows
the estimated cognitive energy-related state, the middle sub-panel displays the control input, and the bottom sub-panel depicts the drug injections. Red
pulses are related to excitation and the blue pulses are related to inhibition. The grey background indicates open-loop simulation (i.e. u = 0), while white
background implies the closed-loop results.

III. RESULTS

In this section, we present the results for three different
cases: open-loop healthy subject and closed-loop Cushing’s
patients with and without circadian rhythm. In each case,
we present the control signal and the controlled cognitive
energy-related state (Figure 3).
A. Open-loop (Healthy subject)

We aim to track one’s cognitive energy-related state when
no control input is applied (uk = 0). In the upper sub-panel
of panel A in Figure 3, it is depicted that the estimated
energy state is at its peak during the working time (06:00 -
16:00), and it drops during the night.

B. Closed-loop (Cushing’s patient without circadian rhythm)

We simulated five days; during the first two days no
control was implemented. In the closed-loop architecture
(last three days), our system detects low energy during the
wake time; then, the control signal increases the energy state
for the day time activity (Red pulses in the third sub-panel of
panel B in Figure 3). On the other hand, the control decreases
the energy state during the sleep time (i.e. 22:00 - 06:00)
(Blue pulses in the third sub-panel of panel B in Figure 3).

C. Closed-loop (Cushing’s with circadian rhythm)

Similar to case B, our system detects energy dysregulation
both during wake and sleep. Then, the control algorithm
regulates the cognitive energy-related state (Panel C of
Figure 3).

IV. DISCUSSION AND CONCLUSIONS

With the goal of energy regulation in hypercortisolism, we
proposed a wearable brain machine interface architecture, by
first simulating cortisol profile data, and then employing a
state-space approach. We related CRH secretion observation
to one’s hidden cognitive energy-related state. Thereafter, we
modeled drug dynamics and used a fuzzy control approach
to design the actuation policy and regulate the energy state.
To the best of our knowledge, this study is one of the very
first simulations in the area of regulating patients’ cognitive
energy-related state by using cortisol profile measurements.
We illustrated that we can achieve energy regulation in
hypercortisolism, and our simulated results indicate that the

proposed method has great potential to be implemented and
used in daily life.

In the first case, we showed how our approach can track
a healthy person’s cognitive energy-related state by taking
the cortisol profile as the observation. Then, for the case
of Cushing’s disease, we designed a colsed-loop approach
for energy regulation using medications. When we observe
a low level of energy in the morning, excitatory medications
could be used to elevate cortisol levels. Medications such
as Mifepristone [33], [39], [40], [41] and Benzodiazepin
[42] could be used to increase the cortisol level in the
morning. On the other hand, the problem of insomnia (i.e.
having sleep issues during nights) might be caused by high
serum cortisol levels in the evenings, due to lack of normal
diurnal variations in cortisol secretion. Medications such as
Ketoconazole [43] and Metyrapone [34] could be used to
inhibit cortisol secretion. These medication could be used to
lower cortisol levels in the evening to help lower the energy
during sleep to avoid unwanted wake at night.

Future work would include incorporating all possible
medications and designing the control algorithms with the
capability to choose from them. This system design could
potentially enable cortisol regulation efficiently with minimal
medical side-effects to eventually treat hypercortisolism in
real-world situations.
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