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I. SUPPLEMENTARY INFORMATION: METHODS

A. Multi-Rate State Space Formulation
We put Equations 1-3 into a state space form and derive

the discrete analog of the system. In this formulation, the
unknowns include τ1 and τ2, qi and ∆i (for i = 1, 2, · · · , N).

Let, x(t) =
[

x1 x2
]>, Ac =

[
− 1
τ1

0
1
τ1

− 1
τ2

]
, Bc =

[ 1
τ1
0

]
and Cc =

[
0 1

]
. Hence, the state space model can be

written as:

Ûx(t) = Ac x(t) + Bcu(t)

y(t) = Cc x(t) + ν(t)

where y(t) is the observed skin conductance (SC) and ν(t)
is the measurement noise at time t. Assuming that the input
and the states are constant over Tu , by letting Λ = eATu , and
Γ =

∫ Tu

0 eA(Tu−ρ)dρ, we can write the discrete state space form
as:

x [k + 1] = Λx [k] + Γu[k]

y [k] = Cc x [k] + ν [k] .

This can be extended to a multi-rate formulation, i.e., for
the cases where neural stimuli and SC measurement have
different sampling frequencies. We let the SC measure-
ment sampling frequency Ty = LTu , where L is an in-
teger. We can also represent L as the ratio of number
of samples in neural stimuli and SC signal, i.e. L =
N
M where M is the number of available data points. By
letting Ad = Λ

L , Bd =
[
ΛL−1Γ ΛL−2Γ · · · Γ

]
,

ud [k] =
[

u [Lk] u [Lk + 1] · · · u [Lk + L − 1]
]>,

νd [k] = ν[Lk] and xd [k] = xd [Lk], we can represent the
multi-rate system as:

xd [k + 1] = Adxd [k] + Bdud [k]

y[k] = Cc xd [k] + νd [k]

where Ad and Bd are functions of τ =
[
τ1 τ2

]
. Then,

using the state transition matrix, and considering that the
system is causal, we can write the system equation as:

y [k] = F [k] xd [0] +D [k]u + νd [k]

where F [k] = CcA
k
d
, D [k] =

Cc

[
Ak−1

d
Bd Ak−2

d
Bd · · · Bd 0 · · · 0︸       ︷︷       ︸

N−kL

]
, and

u =
[

ud [0] ud [1] · · · ud [k − 1] · · · ud [M − 1]
]>.

u represents the entire input over the duration of the
study. Considering the initial condition x1(0) = 0 and
y(0) = x2(0) = y0, we can let xd [0] =

[
0 y0

]>.
Then, let y =

[
y [1] y [2] · · · y [M]

]>
M×1,

where y represents all the data points. Moreover,
let Fτ =

[
F [0] F [1] · · · F [M − 1]

]>
M×2,

Dτ =
[
D [0] D [1] · · · D [M − 1]

]>
M×N

, and
ν =

[
ν [1] ν [2] · · · ν [M]

]>
M×1. Hence, we can

represent this system as:

y = Fτ xd[0] + Dτu + ν.

This solution is equivalent to Equation 5 by considering
Fτ xd[0] = Aτ y0 and Dτ = Bτ .

B. Discretization of Neural Impulse Train

As both discrete and continuous representation of neural
stimuli has been carried out with impulse functions, a careful
conversion between these representations is necessary. u(t)
is defined as a summation of weighted delta functions, i.e.,
u(t) =

∑N
i=1 qiδ(t − ∆i) where ∆i = iTu is the arrival time of

the corresponding impulse. Each delta function has an area
of 1 under the curve. For discretization, we first take an
approximation of the Dirac delta function with a rectangular
function of width Tu and height 1

Tu
to have the area of

the rectangle 1 where Tu is the sampling interval of neural
stimuli. Then, we sample the neural stimuli with the sampling
interval Tu . For example, a continuous time neural stimuli
ui(t) = qiδ(t − ∆i) with only one weighted impulse (Figure
1 (a)) can be written as a scaled and shifted rectangular
ũi(t) =

qi
Tu

Π( t−∆i−Tu/2Tu
) (Figure 1 (b)). It has been time scaled

to have a bin size equal to the sampling frequency. Amplitude
has been scaled with the reciprocal of the sampling frequency
to keep the area under the curve same as in ui(t). Finally,
the approximation can be sampled to obtain discrete sequence
ui[k] (Figure 1 (c)).

Fig. 1: Discretization of Neural Stimuli. Each panel shows
the steps for discretization of the neural stimuli represented
with weighted impulse train. (a) An example of continuous
time neural stimuli ui(t), represented with with an weighted
and shifted Dirac delta function, (b) the approximation to
the ui(t) function with a rectangular function and (c) the
equivalent discrete neural stimuli represented with Kronecker
delta function.

C. Subjects Information

The following table shows subject ID, age, gender and BMI
of each participant.

Participant No. Subject ID Age Gender BMI [ kg

m2 ]

1 01 30 M 30.00
2 05 30 M 24.75
3 08 27 M 19.32
4 09 25 M 21.70
5 12 32 F 20.20
6 16 24 M 16.66

D. Derivation of Equation 11

For any signal ζ(t), the κth order spectral component of lth
derivative of the signal can be modified as below [1]:

H̄(l)ζ (mω0) =

∫ Td

0
φm(t)

dlζ(t)
dtl

dt



2

= (−1)l
∫ Td

0
ζ(t)

dlφm(t)
dtl

dt

= (−1)l
κ∑
j=0
(−1)j

(
κ

j

)
(κ + m − j)lωl

0(−1)lcas(−
lπ
2
)

·

∫ Td

0
ζ(t)cas((−1)l(κ + m − j)ω0t)dt

=

k∑
j=0
(−1)j

(
κ

j

)
(κ + m − j)lωl

0cas(−
lπ
2
)

· Hζ ((−1)l(κ + m − j)ω0).

E. Choice of HMF dependent Time Domain Optimization for
Estimating β

We can rewrite the cost function in the Equation 17 as
follows,

J(Θ, u, β) =
1
2

−M∑
m=−M

wβ[m + M]ε2(mω0).

Each of the error terms is multiplied by a window coefficient
and smaller values of window function coefficients will lead
to smaller value of cost function. Figure 2 shows how the
shape of the window function changes with the value of β.
A higher value of β leads to a very narrow function which
minimizes the cost function. However, a higher value of β
will discard most of the information in the HMF spectral
components. This way of solving the optimization problem in
the HMF domain for β tends to discard the signal components
along with the noise components. For example, the minimum
value for the HMF domain cost function can be found with
all zeros in the window function. However, zero window
function clearly discarding all the information of the signal.
To prevent discarding the key information in the HMF spectral
components, we can instead solve the time domain equivalent
of the optimization formulation in 17, which is presented in
the optimization formulation in 19.

F. FOCUSS+ Algorithm

FOCUSS+ [2] solves for nonnegative u such that u has a
certain maximum sparsity nu while minimizing the following
optimization problem,

minimize
u≥0

1
2
| |y − Aτ y0 − Bτu| |22 + λ | |u| |

p
p .

(a) P(r)u = diag(|u(r)i |
2−p)

(b) λ(r) =
(
1 − | |y−Aτy0−Bτu | |2

| |y−Aτy0 | |2

)
λmax, λ > 0

(c) u(r+1) = PuB>τ (BτPuB>τ + λI)−1(y − Aτ y0)

(d) u(r+1)
i ≤ 0→ u(r+1)

i = 0

(e) After half of the selected number of iterations, search
for the peaks with distances less than the minimum peak
to peak distance ∆min. Keep the largest peak among the
adjacent peaks within ∆min window.
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Fig. 2: Kaiser Windows With Different Shape Parameters.
Each curve represents different wβ[ j] window functions with
different shape parameters β. For example the narrowest
window represented with red curve is wβ[ j] with β = 204.8
and the widest window represented with blue curve is wβ[ j]
with β = 3.2.

(f) After about half of the selected number of iterations, if
| |u(r+1) | |0 > nu, select nu the largest values of elements
of u(r+1) and set all other elements to zero.

(g) Iterate
Note that we used ∆min = 0.5 s in this study.

G. GCV-FOCUSS+ Algorithm

The sparse identification problem in the HMF domain is as
follows,

minimize
Θ,u,β

J(Θ, u, β) =
1
2
ε>(Mω0)W(β)ε(Mω0) + λ | |u| |

p
p

subject to
G(Θ) ≤ 0
u ≥ 0

where ε(Mω0) = Z(Mω0) − Φ(Mω0)Θ − B>φ (Mω0)u.
Let ZΘ,β =

√
W(β)(Z(Mω0) − Φ(Mω0)Θ) and Bφ,β =√

W(β)B>φ (Mω0). Given β and Θ, the optimization problem
can be solved for u using the FOCUSS+ algorithm. We use a
GCV based method for choosing a regularization parameter λ
that balances between capturing noise and the sparsity level.
Zdunek et al. [3] used the GCV technique for finding the value
of λ for the FOCUSS+ algorithm incorporating singular value
decomposition:

G(λ) =
L

∑L
i=1 γ

2
i

(
λ

σ2
i +λ

)2

∑L
i=1

(
λ

σ2
i +λ

)2

where γ = R>ZΘ,β =
[
γ1 γ2 · · · γL

]> and Bφ,βP
1
2
u =

RΣQ> with Σ = diag{σi}; R and Q are unitary matrices and
σi’s are the singular values of Bφ,βP

1
2
u [3]. Moreover, L is

the number of data points. In this study, we use a range of
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zero to 0.1 for λ. For r = 0, 1, 2, · · · , GCV-FOCUSS+ works
as follows [4]:
(a) P(r)u = diag(|u(r)i |

2−p)

(b) u(r+1) = PuB
>
φ,β(Bφ,βPuB

>
φ,β + λI)−1ZΘ,β

(c) u(r+1)
i ≤ 0→ u(r+1)

i = 0
(d) λ(r+1) = argmin

0≤λ≤0.1
G(λ)

(e) Iterate until convergence

H. Initialization Algorithm

The initialization is performed in the time domain (similar
to [4], [5], [6]). A summary of the algorithm to obtain good
initial conditions for τ, u and β is as follows:
(a) Initialize τ̃0 by sampling a uniform random variable on[

0.10 1.4
]

for τ̃(0)1 and
[

1.5 6
]

for τ̃(0)2 and let
j = 1.

(b) Set τ equal to τ̃(j−1) and use FOCUSS+ to solve the
inverse problem to find the stimuli ũ(j) by initializing
ũ(0) at a vector with all ones.

(c) Set u equal to ũ(j); use the interior point method and
minimize error | |y − Aτ y0 − Bτu| |2 to solve the time
domain system parameter identification problem for ob-
taining τ̃(j).

(d) Repeat between steps (b)-(c) for j = 1, 2, 3, · · · , 30.
(e) We set τ0 = τ̃(j) and u0 = ũ(j)

(f) We calculate Θ0 by plugging in τ0 in Θ =
[
τ1 + τ2
τ1τ2

]
.

(g) Using u0 and τ0, we first take βi = 0.1 × 2i for
i = 0, 1, 2, 3, · · · , 10 and set β0 = βmin such that βmin
minimizes | |y − Ah(β)y0 − Bh(β)u| |22 .

II. SUPPLEMENTARY INFORMATION: RESULTS

Figure 3 shows the quantile-quantile plots of the phasic SC
model residual errors for the 6 participants suggesting that
the model captures the SC dynamics, and that the phasic SC
residual errors have a Gaussian structure and are white. Figure
4 shows the reconstructed signal that includes both tonic and
phasic components. The values R2 for this case is higher than
0.95 all participants.
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Fig. 3: White Gaussian Structure in the Model Residual Errors of Phasic SC data of 6 Participants. Each of the panels
displays the quantile-quantile plot of the SC model residual errors for each of the 6 participants; the graph shows that the
residual errors are Gaussian.
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Fig. 4: Estimated Neural Stimuli and Reconstructed Signals of the Experimental SC Data in 6 Participants. Each panel
shows the SC signal (sum of phasic and tonic components) (blue curve), the reconstructed SC signal (sum of phasic and tonic
components) (red dashed), the estimated neural stimuli timings and amplitudes (black vertical lines with circle on top) for each
of the participants. The estimation is done on phasic components using the proposed method; then, the previously separated
tonic components are added to the estimated phasic components.


