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Abstract—Objective: Electrodermal activity (EDA) indicates
different eccrine sweat gland activity caused by the stimulation of
the autonomic nervous system. Recovering the number, timings,
and amplitudes of underlying neural stimuli and physiological
system parameters from EDA is a challenging problem. One of
the challenges with the existing methods is the non-convexity of
the optimization formulations for estimating the parameters given
the stimuli. Methods: We solve this parameter estimation problem
using a continuous-time system identification framework: i) We
specifically use the Hartley modulating function (HMF) for
parameter estimation so that the optimization formulation for
estimating the parameters given the stimuli is convex; ii) We use
Kaiser windows with different shape parameters to put more
emphasis on the significant spectral components so that there
is a balance between filtering out the noise and capturing the
data. We apply this algorithm to skin conductance (SC) data, a
measure of EDA, collected during cognitive stress experiments.
Results: Under a sparsity constraint, in the HMF domain, we
successfully deconvolve the SC signal. We obtain number, timings,
and amplitudes of the underlying neural stimuli along with the
system parameters with R2 above 0.915. Moreover, using simu-
lated data, we illustrate that our approach outperforms existing
EDA data analysis methods, in recovering underlying stimuli.
Conclusion: We develop a novel approach for deconvolution of
SC by employing the HFM method and capturing the significant
spectral components of SC data. Significance: Recovering the
underlying neural stimuli more accurately using this approach
will potentially improve tracking emotional states in affective
computing.

Index Terms—Biomedical signal processing, optimization, de-
convolution, system identification, state-space methods

I. INTRODUCTION

In general, electrodermal activity (EDA) refers to any
changes in the electrical characteristics of skin due to different
physiological activities. Skin conductance response (SCR),
which is one of the measures of EDA for physiological analy-
sis, indicates different eccrine sweat gland activities caused by
the stimulation of autonomic nervous system (ANS), mainly
by sudomotor nerve [1]. When sweat secretions occur in
response to stimulations from the autonomic nervous system,
there is an alteration in the ionic permeability of the cell mem-
branes. This change in permeability increases conductance in
skin tissue. Although sweating, controlled by hypothalamic
areas, is mostly intended for thermoregulation, it also depends
on other physiological events including emotional arousal [2].
Many works attest to the high correlation between sympathetic
nervous activity and EDA [3], [4].
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Physiological signals like EDA that have a high corre-
lation with sympathetic nervous activity can help to in-
terpret emotional dysfunctions or abnormalities. Emotional
dysfunctions influence psychiatric disorders like depression
[S5]. Many studies have shown risks of suicidal behavior in
patients having psychiatric disorders including depression and
posttraumatic stress disorder [6], [7], [8]. Mortality due to
mental disorders has been identified as one of the major causes
of death worldwide [9]. Moreover, dysregulation in arousal
can cause symptoms including insomnia and irritability [10].
Patients with posttraumatic stress disorder show symptoms of
difficulty in falling asleep and excessive irritability [11]. In
psychopathology, identifying problematic patterns of emotion
and emotional regulation can characterize psychiatric disorders
[12], [13]. Several studies have been carried out to detect men-
tal disorders using emotional tracking [14] and from disturbed
arousal conditions [15]. Mental disorder-related issues could
be significantly reduced if a personalized health monitoring
system [16] with a user-friendly daily psychological condition
tracking could be devised.

Macefield et al. [14] have shown that areas of the brain
related to sympathetic nervous activity can be identified by
using functional magnetic resonance imaging (fMRI) of the
brain and by recording concurrent microelectrodes readings
generated by sympathetic outflow to muscle and skin. They
have proposed to extend this idea to examine specific disorders
of emotional expression to comprehend underlying neural
processes. To collect fMRI data, a clinical setup is necessary
which will be convenient for clinical diagnosis. Unfortunately,
it is not convenient for daily tracking of neural process
related to emotional states. Bomba et al. [17] used heart
rate variability (HRV) from the ECG signal as a measure
of ANS imbalance. However, Soh et al. [18] illustrated the
underlying challenges and complexity of acquiring ECG data
using wearable technology. In another study, Faghih et al. [19]
were able to recover the amplitude and timing of neural stimuli
related to different fear states employing EDA signals with a
deconvolution scheme [20], [21]. Utilizing recovered timings
and amplitudes, emotional states can be estimated to analyze
emotional disorders.

Many deconvolution schemes have been proposed for
physiological signals including skin conductance (SC) data.
Benedek et al. [22] proposed a non-negative approach to
decompose SC data into discrete compact responses and at
the same time assessed deviations from the standard SCR
shape. However, this decomposition approach could detect
noise as SCR and does not include the individual differences
in modeling the fall and rise times. Greco et al. [23] proposed



decomposing SC data into tonic and phasic components.
They formulated a quadratic programming problem to find
sparse solutions for the input stimuli. However, the use of
fixed regularization parameter makes it challenging to find
an optimal sparse solution. In another work, Gallego et al.
[24] proposed an approach to obtain a more sparse solution;
however, this approach seems to oversparsify the solution.
In the deconvolution scheme proposed by Faghih et al. [25],
[19], [20], [21], [26], a two-step coordinate descent approach
has been incorporated. In the first step, they used the FOCal
Under-determined System Solver (FOCUSS) algorithm [27]
to find a sparse solution of the neural stimuli. This step is a
convex optimization problem to which a global solution can
be achieved. In the following step, their algorithm employs
another optimization problem to find the physiological system
parameters, which is not convex. Therefore, it is possible for
the solution to stagnate at a local minimum.

In the present study, we propose an algorithm to find neural
stimuli and underlying system parameters and use this algo-
rithm to analyze EDA data. Inspired by the work carried out by
Faghih er al. [25], [19], [20], [21], [26], we use a state-space
model to relate SC with internal unobserved neural stimuli.
However, in this work, we re-formulate the optimization prob-
lems for model parameter estimation in [25], [19], [20], [21],
[26] as a convex problem to avoid stagnation of the solutions
at local minima. In contrast to the model proposed in [19], we
only model the phasic component of SC as a state variable in
our state-space equations. We separate the phasic component
from the SC using the cvxEDA algorithm proposed in [23].
Then, we take a coordinate descent approach to recover the
neural stimuli and estimate the system parameters. We use a
modified version of FOCUSS [20] to solve the inverse problem
of finding neural stimuli from SC data. For system parameters
estimation, we employ a continuous-time system identification
approach using Hartley Modulating function. This allows for
formulating this problem as a convex optimization problem in
terms of neural stimuli and physiological system parameters.
We also incorporate a data dependent bandwidth selection
approach for more accurate estimation of physiological system
parameters. Then, we apply our method to analyze SC data
collected during cognitive stress tasks. We successfully recover
underlying stimuli and the physiological parameters.

II. METHODS
A. Experiment

1) Dataset 1: In this study, we analyze publicly avail-
able dataset collected by Quality of Life Laboratory at the
University of Texas at Dallas [28]. The data was collected
from 20 college students. Fourteen of them were male and
six of them were female. Information on subject ID, age,
gender and body mass index (BMI) of each subject are
provided in the supplementary information. The experiment
was carried out to distinguish between physiological signals
during different types of stresses (‘cognitive stress’, ‘emotional
stress’, ‘physical stress’ and ‘relaxing’). A detailed explanation
of the experiment is given in [28]. In this study, we analyze
EDA data from 3-minute ‘counting task’ of the ‘cognitive

stress’ portion of the study. In the ‘counting task’, the subjects
have to count backwards by sevens, beginning with 2485, for
three minutes. The SC signal was measured with a sampling
frequency of 8 Hz. In our study, we downsample the data by
a factor of 2 and obtain the 4Hz signal for analysis. Further,
we discard all the signals that have been corrupted by heavy
artifacts. Therefore, we only analyze 6 subjects whose SC
signals are not corrupted by heavy motion artifacts.

2) Dataset 2: Skin conductance responses to loud sounds,
simultaneously recorded from palm, fingers and foot [29]
dataset were collected for modeling event-related SC re-
sponses. Participants were asked to press a foot operated
pedal in response to 20 auditory stimuli. Auditory stimulations
are one-second long white noise bursts. The details of the
experiment are in [30]. We use SC recordings from the middle
phalanx of the dominant second and third finger for our study.
The dataset contains the timings of the auditory stimulations
to perform the comparison with the recovered stimuli. We use
this dataset to perform the comparison with existing methods.
The signals in this dataset have a sampling frequency of 100
Hz. We downsample the data to 4 Hz for our analysis.

B. Model Formulation

The SC data can be represented as a summation of two
different signals [22], [31]. One is a slowly varying signal
called tonic component and another is a comparatively fast
varying signal called phasic component. We separate the
phasic component from SC using the algorithm proposed by
Greco et al. [23].

The phasic component of the SC can be modeled as a second
order differential equation. We use a second order differential
equation model similar to the models in [19], [31]. This model
describes the changes in the phasic SC as a function of the
activity of the sudomotor nerve. The model is defined in state-
space form as follows:

1 1
x1(1) = _;xl(t) + ;M(f) (D
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Xo(t) = T—le(l) - T—zxz(l) ()

where x, is the SC level of the phasic component and x; is
an internal unobserved state variable. 7; and 7 are SC time
constants in the model corresponding to the rise time and fall
time, respectively. This time-invariant system representation
can model the phasic responses under the assumption that
the time constants 7; and » do not change over the duration
of the experiment. It is known that a single neural impulse
from ANS is responsible for a single phasic SC response [32],
[24], [19]. The length of the experimental signals and average
separation of the consecutive phasic SC responses are very
high compared to the number of the neural stimuli generated
by ANS; hence, we can include a sparsity constraint on the
neural stimuli. In contrast to the model proposed in [31], we
consider a finite number of stimuli as the model input (similar
to [32], [24], [19]). This definition makes it suitable to take
timings and amplitudes of the stimuli to quantify emotional
states. We define the sparse abstraction of the input stimulation
as u(t) = Zf\i 1 gi6(t — A;), where g; represents the level of



stimulation at time A;. g; of zero implies no stimulation at
time A;. N refers to the length of the input; N is a function of
the duration of the experiment and the input sampling interval
T,. In this case, we can write A; = iT,,.

1) Discrete-Time System Identification: Let’s say the signal
has been sampled with a sampling interval of 7, for M
samples. We can define the observed phasic SC data y,, as
follows:

ylk = -xz(tk) + Vtk (3)

where k = 1,2,---,M; 1 = kT, and v, represents signal
noise. We model v;, as a Gaussian random variable and use
this assumption to implement a least squares approach in our
estimation algorithm. Using the phasic SC data y,, , we would
like to estimate 7, and 1, and also recover the input u(z), i.e.,
amplitude and timing of the stimuli. Assuming that x;(0) = 0
solution for y;, would be as follows:

yl‘k Zatk)’O"'btku"'Vtk (4)
_lk 1 _k Ik
where a, = e =2, by, = [gogple™ - ™)
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Tu
g2 -+ gqn]T represents the entire input over the entire
experiment. Let y = [y;, ys, vyl T =[n ],
A = [atl ar, atM]T, B, = [bt1 btz th]T,
v=1[v, w, vy, 1T and yo is the initial condition of

the phasic SC level. Here, T, is always an integer multiple of
T,. Now we can represent the system as:

y=A:yo+Bru+v. 5)

(5) shows the representation of the sampled phasic SC data. In
this study, we simulate data using a state-space approach. A
detailed description is given in the supplementary information.
In this study, we are considering 7, =Ty, and N = M, i.e., we
take the resolution of input vector u as same as y.

2) Continuous-Time System Identification: In continuous-
time system identification technique, we transform the signal
into a new domain according to the system model so that the
optimization problem for finding system parameters 7; and
T becomes convex. We first write the two first-order coupled
differential equations ((1)-(2)) as a second-order differential
equation:

2
d dytg” £3() = u(t) (©)

where y(f) is the continuous equ1valent of yu, a1 = 11 + 1,
and oy = 1y12. If we find @ and a5, then we can solve for 7|
and 7. Let @ = [ a ]T, 20(0) = (ag — 4a). Hence:
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The modulating function method for identifying the model
parameters begins with multiplying both sides of (6) by the
modulating function and integrating over T, which is the

dy(t)
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duration of the sampled signal. The modulating function is
given by ¢,,(t) where the integer m refers to the m™ spectral
component. The length of the modulating function is chosen
as same as the sampling duration of the signal. The integration
results in
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C. Estimation

To accomplish our goal, we break down the problem into
two sub-problems. One is to find the model parameters T
and another is the inverse problem, i.e., to find the stimuli
u. Inspired by the coordinate descent deconvolution scheme
by Faghih et al. [20], we follow a similar approach. Unlike
[20], we use a continuous system identification approach for
the parameter estimation. Then, we solve the inverse problem
using the FOCUSS algorithm [27]. Using a coordinate descent
approach, we iterate between these two steps until conver-
gence. These two steps are described in detail in Sections II-C1
and II-C2. Then, the coordinate descent approach is discussed
in Section II-C3.

1) System Identification using Hartley Modulating Func-
tions: There are different modulating functions that could be
used for continuous-time system identification. One can use
any modulating function according to their convenience [33],
[34]. Among the two most widely used modulating functions,
one option is the Fourier modulating function [34]; however,
it involves complex values and is not the best choice for this
study. Another one is the Hartley modulating function (HMF)
which does not involve complex numbers in spectral com-
ponents. Apart from having real coefficients, this modulating
function also does not depend on the boundary conditions and
the computations of all the spectral components can be made
using fast algorithms for the discrete Hartley transformation
[35]. We use the HMF approach as this function and its
corresponding spectral components are always real-valued
and yet contain all the information contained in the Fourier
modulating function [33], [34]. For a «™ order system, the

th order HMF spectral component has to be calculated. The
properties of a k" order HMF allow us to formulate a convex
optimization formulation for model parameter estimation.

Properties of HMF: The k™ order HMF [35] with fixed
time interval [0, T,] is as follows:

D) = Z( 1)1( )cas<<x+m Do) ©)

where for a variable s, cas(s) = cos (s) + sin (s) and dm(v)

cas(—s). HMF ¢,,(¢) has the following properties:

¢m(t) is zero beyond the interval [0, T,],
the I derivative ¢ (t) exists for all/ =0, 1, -

") —Ofort=0andt =T,
(10)

-,k—1and
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where wg = —ﬂ. In this study, the model order is 2. Since we

are given the sdampled signal, we repeatedly apply integration-
by-parts in (8) until all derivatives of input (or output) signal
vanish. For any signal £(¢), the k™ order spectral component
of I™ derivative of the signal can be written as below [36],
[37]:

Ta
A mwo) = [ ¢um(0)

d'¢(r) RN .
= eV (FJoc-sm=s

.wf)cas(—%r)Hg((—l)l(K+m — J)wo) (11)

where I:Iél)(mwo) is the m™ HMF spectral component of /!
derivative of the continuous signal {(¢), and Hy(w) is the
Hartley Transform (HT) [38] of {(¢) defined by,

H;(w) = /_-oo L(t)cas(wr)dt. (12)

Its corresponding transformation of discrete sequence with Ny
samples and duration T, is given by,

el

770 é’

Hy(m) = (13)

Estimation of HMF spectral components can be carried out
using continuous Hartley transform with numeric integration
using (12) or direct estimation of Hartley transform using (13).
In this study, we use (12) and trapezoidal rule for the numeric
integrations for Hartley transform. The number of samples N,
for signal y(¢z) and u(t) is equal to M and N, respectively.
Convex Cost Function Formulation with Linear Regression

: Using (11), we can rewrite (8) as,

azﬁﬁz)(mwo) + all:I;I)(mwo) = —I:I;O)(mwo) + I-—Ib(lo)(mwo).
(14)

Here,
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q
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= b (mwo)u.
We can rewrite (14) as follows,

A ) = A meo) - a1 A o) + b(mao)u.

15)

Let Z(mwyp) = H;O)(mwo) and let e(mwo) model the error in
the new domain. Rearranging the (14), it can be rewritten as
a linear regression,

Z(mwo) = @' (mwo)® + by (mwo)u + e(mawp)  (16)

where
OT(mwo) = = | Ay (mwo) A (ma)

Taking a sequence of observation for m = 0, +1,+2,--- , + M
where M is the maximum frequency component. Then, (16)
can be rewritten as a vector equation. Hence, the following
optimization problem can be formulated to find the parameter
vector ©, 8 and u:

J(O,u,B) =

mig’iln}gize %ST(MwO)W(ﬂ)s(MwO)

subject to
G(©) <0 a7
[lallo < N

u=>0

—80(O)

mln _ gl(G)
g] (@) — Tmax

" = gz(®)
gz(®) -
symmetric frequency dependent weighting matrix with the
shape parameter B, e(Mwy) = Z(Mwy) — ®(Mwy)® —
B (Mwo)u,

where, G(O) = , W(B) is positive-definite

" (Muwy) = [O(—Muwy) D(-wo)
®(0) D(wo) D(Muwo)] °
B (Mwy) = [bg(~Muay) bg(~wo)
be(0) bg(wo) bg(Muwo)]
and
ZT(Muwy) = [Z(-Muwy) Z(~wy)
Z(0) Z(wo) Z(Muwo)].

(17) is convex in terms of u and ® (please see the appendix
information for the convexity proof). Given S and u, we
can find ©® by minimizing the cost function defined in (17)
considering physiological constraints on time constants T
and 7, given by G(®) < 0. The first constraint restricts the
solution of 71 and 7 to be real valued. In the second and third
constraints, we assume rise time 77 is within physiological
lower and upper bounds 77" and "4, respectively. In the
fourth and fifth constraints, We also assume fall time 7, is
within physiological lower and upper bounds T’"”’ and 77",
respectively. We assume u is sparse and hence contains very
small number of non-zero elements out of N possibilities
(llallo < N). As u refers to the neural stimuli from the
brain, all the elements of u are nonnegative (u > 0). We solve
this constrained optimization problem using the interior point
method.

Parameter M Selection for Maximum Frequency Compo-
nent Inclusion: The Parameter M has to be selected such that

it captures the signal and yet cancels out the noise. Garnier

et al. [39] recommend choosing Mwy close to the bandwidth
of the system to be identified. We calculate the maximum
bandwidth w;qx by plugging in the extreme values 7"%*
and 7)"** in @ and a, parameters of (6) to get the transfer

function and calculate the corresponding bandwidth. Then,



we let M = 2“2}% This choice of M allows for including
all the required frequency components. In order to take the
appropriate spectral components of any given data, we propose
an adaptive procedure for choosing the weighting matrix W
automatically.

Choosing Weighting Matrix W: Many authors have sug-
gested taking all the spectral components into account to
include the maximum possible frequency component of the
system [37], [40]. However, according to our investigation that
does not work well for our deconvolution scheme. Sometimes,
it captures noise from the high-frequency region. For success-
ful continuous-time system identification, selecting appropriate
weights on the different spectral components is essential
[37], [40]. To automate the spectral component selection, we
introduce a weighting matrix in which only diagonal elements
are non-zero. This weighting matrix W is chosen such that
there is an emphasis on the significant spectral components.
Hence, there is a balance between filtering out the noise and
capturing the signal. We take all the off-diagonal elements of
the weighting matrix as zeros and set all diagonal elements
of the matrix using Kaiser windows of appropriate shapes.
We specifically use this window function as the shape of the
window can be changed only by changing the parameter .
This way, we can select the significant spectral components
by optimizing over only one parameter 5. A P point Kaiser
window function wg[;] can be defined as follows,

10([?\[1*(%* )2)
10—(,8)’ 0< ] =< P-1

0, otherwise

wgljl = (18)

where I is the zeroth-order modified Bessel function of the
first kind B determines the shape of the Kaiser window.
In this study, we take P = 2M + 1. The optimization
formulation (17) can be minimized using S values that set
matrix W(B) to zero or values close to zero; however, this
is not desired. To avoid such situations in estimating S,
we write the time domain equivalent of the optimization
formulation (17). Let ®@ = argmin J(®,u, 8) = f,(8). Using
c)

(1), T = g(O) = g(fu(B) £ h(B). Hence, Ar £ Ay and
B: = Byp). Using (5), the time domain equivalent of the
optimization formulation (17) becomes:

mi&i‘fbile %Hy — Ang)yo — Brpull3

subject to 19)
GO®)<0
[lallo < N
u>0.

Given © and u, we can find B by the optimization problem
in (19). We solve this optimization problem using the interior
point method.

2) Sparse Inverse Problem in Hartley Modulating Function
Domain: The optimization problem in (17) is generally con-
sidered as NP-hard. An /;-norm relaxation can be used to solve
this problem using different techniques including the basis
pursuit, greedy algorithms, iterative-thresholding algorithms,

Algorithm 1 summarizes the system identification approach
using Hartley modulating functions.

Algorithm 1: Hartley Modulating Function-Based Continuous
System Identification with Adaptive Band Selection

Part A:
(a) Calculate the maximum bandwidth w,;,,, of the system

using (6) and the 7{"“* and 7}"4*.
(b) M = 2emax,

(¢) Find all HMF spectral components for m € {-M, - M+
L--,-2,-1,0,L2,--- M-1M}.

(d) Initialize @) and S(o) using the initialization algorithm
described in the supplementary information.

Part B:
(e) Let j =0.
) Set j =j+1.

(g) Set u and O equal to G and ©;_y), respectively and
solve for f(;) by initializing optimization formulation in
(19) at ﬁo_l).

(h) Set u and g equal to @ and S;), respectively and solve
for @(; by initializing optimization formulation in (17) at
@(]-_1).

(i) Iterate between (f)-(h) until convergence.

or the FOCUSS algorithm and its extensions [41]. We can
cast the optimization problem in (17) as,

migin;gile J(O,u,p) = %ST(Mwo)W(ﬁ)s(MwO) + A lul[
5,

subject to (20)

GO <0
u>0

where the [,-norm is an approximation to the lp-norm and A
is the regularization parameter which determines the sparsity
level of the solution for u. FOCUSS algorithm uses a re-
weighted norm minimization approach to solve the optimiza-
tion problem while finding stimuli u. By minimizing the I-
norm and refining the initial estimate to the final localized
energy solution at each iteration, the solution is obtained [27].
By updating A and u in every iteration until convergence, we
can solve for the sparse vector u. Here, A balances between
the sparsity of u and the weighted residual error VWe. By
increasing the value of A, u becomes more sparse. The matrix
B;(Mwo) is the same in every step and can be calculated
only once at the beginning of the algorithm. This makes the
algorithm more efficient.

To ensure there is a balance between filtering out the noise
and capturing the sparsity of the input, we use the Generalized
Cross-Validation (GCV) technique [42] for estimating the
regularization parameter. Hence, we use a modified version of
the FOCUSS algorithm called GCV-FOCUSS+ [25] algorithm,
which is based on the FOCUSS+ [41] and includes a GCV
step. A detail description of FOCUSS+ and GCV-FOCUSS+
algorithms is given in supplementary information.



3) Coordinate Descent Deconvolution: In the coordinate
descent approach, first, we filter the signal using a 0.5 Hz 64
order FIR lowpass filter [43]. Then, we use cvxEDA method
[23] to separate the phasic component from filtered SC data.
By combining the methods described in Sections II-C2 and
II-C1, a coordinate descent approach can be implemented.
Before performing deconvolution, we initialize the algorithm
by sampling the system parameters from uniform distributions
within the boundary conditions. The detailed description of
the initialization algorithm is provided in the supplementary
information. We propose the following algorithm to recover u
and @ from the phasic component.

Algorithm 2: Coordinate Descent in Hartley Modulating
Function Domain

(a) Leti=0.
(b) Run Algorithm 1-A.
(¢) Seti=1+ 1.

(d) Initialize Y using the initialization algorithm described
in the supplementary information.

(e) Set ® and 8 equal to 0" and BED; solve for &
using GCV-FOCUSS+ by initializing the inverse problem
in (20) at @,

(f) Set u equal to @?; to solve for 0" and B using
Algorithm 1-B by initializing @) and S at (:)(z—l) and
BUY, respectively.

(g) Iterate between (c)-(f) until convergence.

We run Algorithm 2 for several uniform random initializations

E of Tonic Component Separation: Participant 1
T T T T T
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Fig. 1: Tonic Component Separation Example. i) The
top panel shows the lowpass filtered SC signal (blue curve)
and the corresponding estimated tonic part (red curve) with
cvxEDA algorithm [23]. ii) The bottom panel shows the
extracted phasic component for the corresponding SC signal
after subtracting the tonic part.

of ® and take the solution of @ and @ (Setting 7 = g(@))
that provides the smallest value of ||y — A;yo — BTullg. The
recovered neural stimuli in the HMF domain can sometimes
lead to lower amplitudes for impulses that occur in the

beginning or at the end of the neural stimuli vector u. Hence,
to ensure this type of behavior does not occur, using the
estimated 7, in the time domain (similar to [20], [19]), we
run the FOCUSS+ algorithm one last time by initializing u
at a vector of all ones and considering a maximum sparsity
equal to ||d]o.

TABLE I: Results from Experimental Data

Participant 7 (seconds) T (seconds) R? Ny, a
1 1.231 2.665 0.973 23 1.10x 1073
2 0.512 2.958 0.966 28 1.80x 1073
3 0414 3.163 0.963 17 2.90 x 1073
4 0.237 4.849 0.916 15 2.60x 1073
5 0.783 3.367 0971 44  3.62x 1072
6 0.362 3.362 0.927 40 1.00 x 1073

The parameters 7; and 7, are the estimated rise time and fall time
of the phasic SC, respectively. N, is the estimated number of neural
stimuli impulses from ANS and R? is the square of the multiple correlation
coefficient.

III. RESULTS

Figure 1 shows an example of the tonic component separa-
tion with cvxEDA algorithm [23]. Figure 2 shows the phasic
component, recovered neural stimuli, and the reconstructed
phasic component of the SC data collected for the participants
from Dataset 1. There are several SC peaks present in the
data which correspond to the cognitive stress originating from
the ‘counting task’. Figure 2 also shows the recovered neural
stimuli timings and amplitudes that correspond to cognitive
stress. Reconstructed signals in Figure 2 were generated using
the model defined in (1)-(2). Table I shows the corresponding
estimated rise time 7; and decay time 7. In Table II, all the
multiple correlation coefficients (R?) are over 0.915. Table I
also shows the regularization parameter A obtained using GCV.
All the regularization parameters are less than 3.7 x 1072 with
minimum value of 1 x 1073, Quantile-quantile plots of the
residuals after reconstruction follows a straight line, which
implies the residuals are zero-mean Gaussian distributed (as
assumed in the problem formulation). The quantile-quantile
plots are provided in the supplementary information. Figures
of the SC reconstructed signals with both tonic and phasic
components are also provided in the supplementary informa-
tion. The values R for this case is higher than 0.95 for all of
the participants if calculated considering both tonic and phasic
components.

We have simulated noisy phasic SC data using results in
Table I and Figure 2, and then performed deconvolution on
simulated data to further validate our algorithm. For simulated
data, both the sparse input and the model parameters are
known, and we can compare the deconvolution results with
the ground truth. To simulate the noise, we take zero-mean
Gaussian random variables with 25 dB signal to noise ratio
(SNR) for each participant. Figure 3 shows the recovered
amplitudes and timings of the impulses for the simulated
phasic SC data. Table IT shows results obtained from the
simulated data. The multiple correlation coefficients (R?) are
above 0.97 for noisy simulated data. Blue impulses in Figure
3 are the ground truth impulses used for simulating the data.
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TABLE II: Results from Simulated Data

[T =71

Participant 7] (seconds) 7, (seconds) el (o) R? Ny IN - N, | X 100 % h%”l x 100 %
1 1.231 2.665 1.167 2726 0989 21 2 5.20 2.29
2 0.512 2.958 0389 3349 0977 24 4 24.02 13.22
3 0.414 3.163 0456 3.074 0974 14 3 10.14 2.81
4 0.237 4.849 0.182 4906 0.985 14 1 23.21 1.18
5 0.783 3.367 0.727 3.352 0987 44 0 7.15 4.09
6 0.362 3.369 0311 3.345 0984 36 4 14.09 0.71

The parameters #; and , are, respectively, the estimated rise time and decay time of phasic SC. N, is the estimated number of neural stimuli
impulses from ANS and R? is the square of the multiple correlation coefficient. Zero mean Gaussian noise has been added to each simulated data point
compared to each of the simulated signal. The noise SNR is 25 dB for all of the simulated data. For each participant, the variance of noise is calculated by
taking the variance of the residuals after deconvolution on real data. The parameters 71 and 7, are, respectively, the rise time and decay time of phasic SC
used for simulating each dataset. The values of 7| and 7, are given in Table I.

Figure 3 illustrates that all the significant impulses have been
detected. However, some of the very small impulses were
missed in presence of noise. The amplitudes and timings of
the detected neural stimuli are very close to the ground truth.

Table II shows the detected rise and fall times along with the
percentage errors. All the percentage errors are below 25%.
The maximum error in detecting the number of impulses in the
neural stimuli is 4. For simulated data based on participants
2 and 6, the algorithm has missed 4 of the impulses that
are insignificant and comparable to the level of added noise.
However, the algorithm has detected all of the significant
impulses.

We also analyze SC data from one male participant (subject
ID 11) and one female participant (subject ID 15) from Dataset
2. Dataset 2 has auditory stimulation timings information to
perform the comparison with the recovered neural stimuli. We
expect to see a time delay from the auditory stimulation to
the neural stimuli as the neural system should take some time
to generate neural stimuli after an auditory stimulation has
occurred. Figure 4 shows our approach detects an impulse

after every auditory stimulation. The average delays are 2.02
seconds for the male participant and 2.08 seconds for the
female participant. The rise time and the decay time for
the male participant are 0.34 seconds and 3.41 seconds,
respectively. For the female participant, the time constants are
0.59 seconds and 3.32 seconds, respectively. We also compare
this performance with other approaches. The LedalLab [22] and
the cvxEDA [23] algorithms detect too many pulses compared
to our approach.

To further compare the performance of our algorithm with
the existing algorithms, we used a synthetic u(f) to simu-
late data using the model in (1)-(2) with model parameters
T = [ 0.7 4.0 ] and noise level of 20 dB signal SNR.
Figure 5 (a) and Figure 5 (b) show the synthetic neural stimuli
and the simulated data, respectively. We then apply different
algorithms to compare the performance. Figure 5 shows the
performances of different algorithms. In this case, we assume
71 and T, are known because the existing algorithms only
solve the inverse problem and do not perform deonvolution.
Figure 5 (c) shows that LedalLab [22] detects too many
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Fig. 3: Estimated Neural Stimuli and Reconstructed Signals of the Simulated Phasic SC Data with 25 dB SNR in 6
Participants from Dataset 1. Each panel shows the simulated phasic component of the SC data (blue curve), the estimated
reconstructed signal (red dashed), the estimated neural stimuli timings and amplitudes (red vertical lines with the circle on top)
and the ground truth of the neural stimuli timings and amplitudes for each of the simulated data (black lines with the dots on

top).

impulses compared to the ground truth. Figure 5 (d) shows
that cvxEDA [23] detects a more sparse solution compared to
Ledalab; however, it still detects too many impulses compared
to the ground truth. As observed, our result in Figure 5 (e)
outperforms the existing algorithms.

We also compare the performance of our algorithm with
the deconvolution algorithm proposed in [20], [19]. Figure 6
shows the result obtained from simulated data using coordinate
descent approach for estimating unknowns 7, 7, and u. Figure
6 (a) shows the result with interior point method as in [20],
[19] and Figure 6 (b) shows the result with proposed HMF
domain method. The estimated rise time and fall time using
the proposed method are 0.7054 seconds and 3.9726 seconds,
respectively. For both of them, the estimation error is less
than 1%. Whereas, the estimated rise time and fall time using
the time domain interior point based coordinate algorithm
are 0.5562 seconds and 4.2501 seconds, respectively. In this
case, errors are 20.5408% and 6.2514%, receptively. The
proposed algorithm has outperforms than the time domain
approach. In this study, we used 16 random initialization for
both algorithms.

IV. DISCUSSIONS

Finding the neural stimuli and physiological system pa-
rameters related to SC is a challenging problem. Firstly,
there can exist multiple sets of physiological parameters and
stimuli that closely approximate an observed signal. Secondly,
the smallest level of noise can perturb the solution to a
physiologically infeasible point due to the sensitive nature

of the bi-exponential function. To overcome these challenges,
proper boundary conditions and constraints have to be applied
in the optimization problem. Alexander et al. [31], use the
values of 71 = 0.75 seconds and 7, = 2 seconds for all datasets
they have analyzed. Greco et al. [23] set 71 = 0.75 and use
fixed 1, values that vary between 2 and 4. We assume that
the rise times lie between 0.10 to 1.40 seconds to have more
flexibility to the subject-specific variations. We also assume
decay times are between 1.5 and 6 seconds, respectively.
To impose the constraints on 7 during continuous system
identification using Hartley modulating function, we used 5
nonlinear physiological constraints on @; and a» to ensure
identifiability. Table I shows the corresponding estimated rise
times 71 and decay times 7, which lie within the boundary. The
boundary constraints have been chosen such that the system
is identifiable and the model parameters do not stagnate at the
boundaries.

A good separation of the tonic component depends on an
appropriate choice of smoothness of the tonic component
which is enforced by the selection of the basis for the
tonic component and the /, -norm penalization parameter of
the spline coefficients in cvxEDA [23]. In this study, we
follow cvxEDA [23] for obtaining the tonic component. While
cvxEDA [23] has good performance in separating the tonic
component from the signal, it can overfit the noise in the phasic
component. Moreover, instead of including the subject-specific
rise and decay times, it assumes these values are fixed. Taking
the phasic component, we use our deconvolution approach to
estimate the rise and decay times as well as the stimuli while
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Fig. 4: Estimated Neural Stimuli from the Experimental Phasic SC Data in two Participants from Dataset 2. i) The
top sub-panels show the separated phasic component of the SC data (blue curve), ii) second sub-panels depict the estimated
neural stimuli with ledaLab [22] (black vertical lines), iii) third sub-panels show the estimated neural stimuli with cvxEDA
[23] algorithm (black vertical lines), vi) last sub-panels show the estimated neural stimuli with the proposed approach (black
vertical lines). Green vertical lines represent the timings of the auditory stimulations.

filtering out the noise. To obtain the phasic component in this
study, we used the default parameters in cvxEDA [23]. The
value of these parameters is crucial for good separation of the
tonic and phasic components.

An inappropriate choice of the input sparsity level (u) and
minimum separation constraint between the input impulses
(arrival time in u) can lead to an incorrect solution. While
the higher number of impulses can lead to overfitting (i.e.
capturing the noise as impulse), higher sparsity level may
fail to recover the underlying process. In the initialization
step, we choose a minimum separation of 0.5 seconds for the
arrival time of the impulses in the FOCUSS+ algorithm. In the
coordinate descent step, GCV-FOCUSS+ provides a balance
in sparsity of the stimuli such that it captures the process yet
filters out most of the noise.

Table I shows the regularization parameters from the GCV-
FOCUSS+ part of the algorithm. We constrained A between 0
and 0.1. The choice of the regularization parameters A depends
on the subject-specific magnitude of the SC signal. The results
from the simulated data based on participants 3, 4 and 6 show
that in some cases if there are many small adjacent impulses
present in the stimuli in presence of high levels of noise,
some of these small impulses in stimuli might be missed by
the proposed deconvolution algorithm. In this case, the GCV-
FOCUSS+ part of the algorithm considers these small spikes
as noise. As a consequence, the estimation of rise time could
become inaccurate. The decay times are larger in magnitude
and are less affected. The deconvolution algorithm always
recovers the significant impulses in the stimuli successfully.

The optimization step for finding the stimuli in II-C2 is a
convex problem [41]. In this study, we formulate an optimiza-
tion problem that is convex in terms of system parameters
and neural stimuli. The proof provided in the appendix shows
the convexity of the problem formulation in terms of ® and

u. However, one should note that in implementing the GCV-
FOCUSS+ algorithm, if an impulse goes to zero, it never
becomes non-zero in the next iterations of the coordinate
descent approach. Hence, sometimes the algorithm might not
reach the global minimum depending on the initial condition.
Moreover, the optimization problem formulation is not convex
in terms of B. As a result, it is still possible to stagnate at a
local minimum using this approach. We used several random
initializations within the boundary conditions to account for
this.

Wickramasuriya et al. [44] used the dataset in [28] (dis-
cussed in II-A) and recovered the stimuli using cvxEDA [23].
Then, they used a heuristic approach to obtain a more sparse
neural stimuli. Then, they used these sparse neural stimuli
for tracking stress [44]. Our proposed algorithm provides an
appropriate sparsity level and can be used directly to track
stress using the approach in [44].

V. CONCLUSION AND FUTURE WORKS

SC depends on the thermal regulation of the body as well
as the sympathetic nervous activity. SC can be a means of
understanding emotional disorders and abnormalities. Moni-
toring emotional states and understanding these disorders and
abnormalities will enable patients to receive necessary actions
or treatment for better mental health. To obtain emotional
information from SC, recovering system parameters and the
underlying neural stimuli is necessary. We use cvxEDA to
separate the phasic component of SC data, and then perform
deconvolution to recover the underlying neural stimuli. We
model the phasic component of the signal using a state-space
model similar to the models in [31], [19], [20]. [19], [20].
Then, we propose a two-step coordinate descent deconvolution
scheme to identify the system parameters and the underlying
neural stimuli. We use a system identification approach that
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recovers the system parameters and neural stimuli in the
HMF domain. We incorporate an adaptive band selection
scheme in HMF domain to have the best possible estimate.
We also use GCV-FOCUSS+ to solve the inverse problem
and find the neural stimuli in HMF domain. We apply our
algorithm to analyze the SC data collected from subjects who
were performing tasks involving ‘cognitive stress’. Finally, to
validate our algorithm, we simulate noisy data based on the

results obtained from the deconvolution of experimental data.
We illustrate that our algorithms successfully deconvolves
noisy simulated data. We also compare performance of our
method with cvxEDA [23] and Ledalab [22] algorithms. Our
algorithm outperforms both these algorithms in finding the
stimuli while balancing between the sparsity and filtering
out the noise. Moreover, our algorithm estimates the system
parameters while the other two algorithms assume fixed known
system parameters.

Using the output of this deconvolution approach, we plan to
formulate a state-space framework for estimating one’s internal
emotional states. Furthermore, we plan to extend this approach
to deconvolution of different pulsatile hormones.
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APPENDIX A
PROOF OF CONVEXITY OF THE HMF BASED COST
FuNcCTION

The optimization formulation (17) is jointly convex in u and
@. It can be shown that (17) satisfies first-order and second-
order convexity condition.
First-order convexity condition
Let v, = [ ©] u] |" and A4 = [ ® By, |. The cost
function in (17) can be rewritten as,

J(xi) = % [Z-Asxi]" W[Z-Asxi].

J : RN*2 5 R is convex if and only if J(x2) — J(x1) —
vJ(x1)"(x2 — x1) = 0 for any y; and x, in dom J.

VJ(x1) = 2A WL = Ag x1).

Plugging in the value it can be shown that,

JOx2) = I(x1) = VI (x1) "(x2 — x1)

= (2 = x1) ALWAG (2 — x1). 21

The right hand side of (21) is always positive as W is positive
semidefinite. So J satisfies the first order condition.
Second-order convexity condition

Taking the second derivative of J,

VI (x) = AgWA,.

As W is a positive semidefinite matrix, v2J(y) > 0.

The cost function in HMF domain satisfies first and second
order conditions of convexity. So, the cost function is jointly
convex in ® and u.



