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Abstract— Variations in the brain’s blood oxygenation and
deoxygenation reflect neuronal activation patterns, and can be
measured using functional near infrared spectroscopy (fNIRS).
We aim to utilize fNIRS to obtain insights into the dynamic
functional connectivity of the brain as a function of the mental
workload. Interpreting connectivity in the brain using noisy
fNIRS data with low signal to noise ratio is challenging. To
overcome the challenges with fNIRS data, we use a hierarchical
latent dictionary learning approach. This approach provides
covariance matrices to obtain the dynamic functional connec-
tivity and neuronal activation patterns that change over time.
We use features from the dynamic functional connectivity of
the brain reflected in fNIRS data collected from the prefrontal
cortex to investigate mental workload. In particular, we study
three types of mental workload tasks called n-back tasks and
perform binary classification for each n-back task compared to
the other n-back tasks and rest condition using support vector
machines. The results of our binary classification of various n-
back tasks compared to the rest condition outperforms binary
classification results reported previously.

I. INTRODUCTION

Functional Near Infrared Spectroscopy (fNIRS) is a
functional brain imaging technique based on measuring
hemodynamic responses that reflect neuronal activation
patterns of the brain. The near infrared region of the
electromagnetic spectrum (620-1000 nm) is scattered by
most biological tissue, but absorbed by hemoglobin. fNIRS
uses this phenomenon to estimate the levels of oxygenated
and deoxygenated hemoglobin (HbO and HbR, respectively)
using modified Beer Lambert Law [1]. Of the many other
techniques, such as Functional Magnetic Resonance Imaging
(fMRI) and Magnetoencephalography (MEG) used in brain
imaging, fNIRS is the one with the most compact and
portable equipment, thus making it ideal to measure a large
number of subjects in different kinds of environments.
Studies also show that electroencephalography (EEG) data
can be used to classify n-back tasks in single trials [2],
[3]. EEG, while providing excellent temporal resolution,
suffers from poor spatial resolution whereas fNIRS exhibits
the opposite characteristics [4]. We use the better spatial
resolution of fNIRS to obtain the functional connectivity
of the different regions of brain. fNIRS optodes can also
be placed over the entire scalp region covering the full
10-5 international system [5]. Once the region of interest
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is known, it can also be used to extract data from exactly
those regions of the cortex. Most fNIRS studies focus on
specific functionalities such as mental arithmetic, cognitive
functions, and difficulty levels of executing certain tasks
[6], [7]. A brain computer interface interprets neuronal
activation in the brain as input commands to a computer.
Study by Herff et al [8] focuses on the n-back task and
its corresponding neural activation in the prefrontal cortex
of the brain that is known to serve an important role in
memory related tasks such as the n-back experiment. There
have been studies conducted to assess the cognitive state
of the brain using various biological signals such as skin
conductance, neural spiking activity, etc [9], [10], [11], [12],
[13], [14]. The low signal to noise ratio (SNR) of the fNIRS
data hinders analysis. A novel approach to this problem has
been proposed in [15] where repeated trials or scenarios are
used to extract data from adjacent sensors and recover the
underlying signal. The correlations obtained can be used to
gain insights into the dynamic functional connectivity of the
brain. The shared covariance between the trials of a single
n-back experiment reflects the coactivation patterns in the
brain that are specific for an experiment, instead of the trial.

In this paper, we aim to extract the shared covariance
matrix for each of the n-back tasks for each subject from the
dataset in [8]. We seek to observe the dynamic functionality
of the brain and their differences for each of the n-back tasks.
Some limitations of using latent factor models can be that
they sometimes yield irrelevant structure and it is difficult
to find meaning for the several latent factors found from the
data. Nevertheless, the Hierarchical Latent Dictionary Model
(HLDM) still gives the dynamic connectivity with reasonable
accuracy. We obtain definite results of differences in the
neuronal pathways when various n-back were performed.
We then make use of machine learning algorithms, more
specifically the support vector machines (SVM) method to
classify these tasks using the covariance matrix derived by
the latent factor model. We successfully obtain a higher
classification accuracy compared to [8], thus demonstrating
the viability of our method.

II. METHODS

In this section, we first discuss the experimental. We then
outline the hierarchical latent dictionary model (HLDM).
Furthermore, we discuss the details of how the model was
applied to the dataset described.



A. Description of the n-back Experiment

The n-back task is a continuous performance task used to
measure the working memory and working memory capacity.
The subject is presented with a series of stimuli, and is then
asked to respond when the given stimulus is the same as the
previous nth stimulus. In the dataset, the subjects use the
space key to indicate the target . As is evident from the nature
of the experiment, the difficulty of the n-back task increases
with n, since the subject is required to remember more of the
preceding stimuli for larger n values. This implies that the
covariance matrix of the 1-back task should be significantly
different from that of the 3-back task. This feature causes it
to have better classification accuracy between the two tasks.
In this study, we analyze the hemodynamic data from the
n-back experiment in [8].

Dataset: Focusing mainly on the cognitive tasks and the
prefrontal cortex of the brain, the dataset in [8] was collected
by performing 3 n-back tasks with 10 trials for each task.
Each of the trials started with a 5 seconds instruction about
the task followed by 22 numbers, with 0.5 seconds for
displaying the number and 1.5 seconds for the subject to
respond to the given stimulus resulting in a total of 44
seconds of total stimulus time. A 15 seconds relaxation
break was provided after each task. Every trial consisted
of 3 ± 1 targets. After 15 trials a break period of 150
seconds was incorporated. An Oxymon Mark III by Artinis
Medical Systems was used to measure the hemodynamic
responses. Two wavelengths of 765 nm and 856 nm were
used to measure concentration changes in HbO and HbR,
respectively. Since the region of interest was the prefrontal
cortex, dataset [8] makes use of four transmitter and four
receiver optodes placed on the forehead such that each
detector measures time multiplexed data from two sources
thus resulting in a total of 8 channels of HbO and HbR. The
sampling frequency was set to 25 Hz.

Table I refers to the information of the dataset used. In
the study in [8], responses to 3 n-back tasks were recorded
for each subject. Each n-back task had 10 trials resulting
in a total of 30 trials per subject. In the dataset, there
were 8 channels, all present in the prefrontal cortex region.
Therefore, the observation matrix ytr,n(t) was 8 × 1. The
task-specific covariance matrix has a dimension of 8 × 8.
The mean dimensions are trial specific. Since dataset [8] has
10 trials per subject per n-back task, the mean dimensions
will be 10× 8, i.e, 10 trials per n-back task for 8 channels.

TABLE I: Dataset information
Data dataset in [8]

Subjects 10
Channels 8

ytr,n(t) Dimension 8× 1
Covariance Dimension 8× 8

Mean Dimension 10× 8

B. Latent Factor Analysis

Latent factor model relates a set of observable variables
to a set of latent factors that have a lower dimension to that

of the observed variables. Modelling the observed data to be
expressed as functions of a number of latent or hidden factors
helps in reducing the high dimensionality of the fNIRS data
and to isolate the unobserved latent variables. The observed
data are modelled as linear combinations of the latent factors
in addition to an error term. This will result in finding
the covariance matrices that reflect the relationships among
many variables in terms of a few underlying, but unobserved
random quantities. Designing the observation matrix ytr,n(t)
as a p×1 matrix wherein each element represents data from
one sensor at a particular point in time, and assuming ytr,n(t)
is a Gaussian process with Np(0,Σ), the latent factor model
can be written as

ytr,n(t) = Cn(t)xtr,n(t) + ε(t) (1)
where xtr,n is the k dimensional latent factor with k <<
p, Cn is the factor loading matrix, and ε is the Gaussian
noise factor ε ∈ Np(0,Σ0), Σ0 is a diagonal matrix with
correlations as the diagonal elements. Σ = Cn×CT

n + Σ0 is
the p× p covariance matrix of the Gaussian process ytr,n(t)
[16], [17], [18].

A Dynamic Latent Factor model assumes markov evo-
lution for the latent factors xtr,n, with time invariant
parametrization [19], [20]. Hence the stationary process
xtr,n(t) follow the equations described in equations (2)
where Atr,n is the transition matrix, Ik is a k dimensional
identity matrix and v(t) is the Gaussian noise factor (v(t) ∈
Nk(0, Ik)):

xtr,n(t) = Atr,n(t)xtr,n(t− 1) + v(t) (2)

C. Hierarchical Latent Model

The factors are modelled to evolve non-parametrically,
so as to capture the long range dependencies between data
points. Thus the p dimensional observation matrix ytr,n(t)
for trial number tr, task n at discrete point time t with trial
specific mean µtr,n(t) and task specific covariance Σn(t) can
be written as,

ytr,n(t) ∼ Np(µtr,n(t),Σn(t)) (3)

The latent factors xtr,n(t) are modelled as k latent dictionary
functions φtr,n(t) each of which is a trial specific random
function [21], [16] :

xtr,n(t) = φtr,n(t) + v(t) (4)

Sharing of knowledge within this latent space is done by
hierarchically coupling the trial specific dictionary functions
around the mean φtr,n0 (t):

φtr,n(t) = [φtr,n1 (t), ..., φtr,nk (t)] (5)

We define q0 & q1 as kernel functions of the Gaus-
sian Process depicting characteristics such as smoothness,
continuity, periodicity, etc. Here we consider the squared
exponential kernel function defined as:

qi(t, t
′) = diexp(−κ ‖ t− t′ ‖22) for i = 0, 1 (6)

where di is a scaling parameter and κ is the bandwidth.
Equations (7) and (8) describe the hierarchical coupling by
equating the mean of the child processes to the parent process
φtr,n0 (t) [15]:



φtr,nj (t) ∼ GP (φtr,n0 (t), q1) (7)

φtr,n0 (t) ∼ GP (0, q0) (8)

where GP is a Gaussian process. Heteroscedasticity is
captured by making the factor loading matrix Cn to be time
evolving and weighted combination of smaller dimensional
latent dictionary functions:

Cn(t) = Θn(t)ζn(t) (9)

where Θn ∈ Rp×L is distributed according to a conditionally
Gaussian shrinkage prior and ζn(t) is a Gaussian processes
with zero mean and kernel function q0.

The resulting trial specific mean µtr,n(t) and task specific
covariance Σn(t) will be as,

µtr,n(t) = Θnζn(t)φtr,n(t) (10)

Σn(t) = Θnζn(t)ζn
T

(t)ΘnT

+ Σn
0 (11)

where Σn
0 is a diagonal matrix with diagonal elements being

the correlations.
III. CLASSIFICATION

In this section, we outline how binary classification was
performed using the covariance matrices.

We obtain and analyze the covariance matrix for one
subject for one task. This matrix represents the dynamic
functional changes in the brain with respect to different tasks.
The obtained covariance matrix for one task at one time point
is a p × p matrix with diagonal values as 1. For N time
points, we can imagine a 3 dimensional covariance matrix
shown in Figure 1. Since the correlation between channels
1 & 2 is same as correlation between 2 & 1 the matrix is
symmetric in nature, i.e out of the 8×8 = 64 values obtained
from dataset [8], 28 are unique. We take the mean, variance
and third order central moment of these 28 values across the
N time points. Thus we have a 3 × 28 = 84 features that
are used for classification. Each n-back task results in one
covariance matrix. Recall that the covariance Σn(t) is task
specific whereas the mean µtr,n(t) is trial specific. The end
result of a 1-back task with 10 trials for one subject will be
a p× p×N covariance matrix.

Fig. 1: Visualization of the covariance matrix. At each time
point from 1 toN , the p × p covariance matrix represents
correlations between the p sensors. Diagonal elements are 1.

For classification, we use SVM. We use a linear SVM
classifier that represents the data as points in space such that
separate categories are divided as clusters with wide gaps be-
tween them. It creates hyperplanes or set of hyperplanes that
can then be used for classification. We perform classification

on the covariance matrices obtained thus differentiating be-
tween the 3 n-back tasks. This differs greatly form the mean
feature from each of the windows used by [8]. A straight line
is fitted to a window of the data. This line’s slope used in [8]
to classify the different tasks. The overall slope of the line
differs for each n-back task. The classification accuracies are
presented and discussed in Section IV.

IV. RESULTS

In this section, we state the different results obtained
by applying HLDM [15] on the dataset. We highlight the
dimensions of the covariance matrices obtained and compare
them to isolate the region of interest for memory related tasks
like the n-back.

Figure 2 shows the 8×8 plot of the covariance matrix for
dataset [8]. We see a marked difference in the 1-back task
before and 500 ms after stimulus. The correlations between
sensors have increased as is evident from the darker shades
of blue and violet colours. Similarly we note the difference
in correlations before and 500 ms after stimulus in the 3-back
task. We see a remarkable difference between the 1-back and
3-back tasks. While the 1-back task has more correlations
between sensor channels, the 3-back task’s correlations seem
to be focused between certain select sensor channels.

Fig. 2: An example plot of the 8× 8 covariance matrix. The
top left matrix depicts the result for 1-back task when the
subject is at rest. The top right matrix shows the response
500 ms after the stimulus. The bottom left matrix shows the
3-back task result when the subject is at rest. The bottom
right is the covariance matrix 500 ms after the stimulus. The
diagonal elements are self correlated, hence are equal to 1.
For better distinguishable plots each of the elements were
assigned on the scale of 1 to 256

Table II refers to the classification accuracies obtained for
all the 3 tasks in the dataset [8] and the accuracies obtained
with our HLDL-SVM approach.

TABLE II: Classification accuracies for 1-back, 2-back, 3-
back tasks using mean, variance and third order moment of
Σn(t).

Task Accuracy in [8] Accuracy using our HLDL-SVM

1-back, 2-back 58.5% 65.6%
2-back, 3-back 61% 67.5%
1-back, 3-back 78.0% 75.0%



Table III refers to the classification accuracies and their
respective accuracies for 1-back and 2-back tasks against
RELAX (i.e. rest period) in the dataset [8] and the accuracies
obtained with our HLDL-SVM approach.
TABLE III: Classification accuracies for 1-back, 2-back tasks
against RELAX task using mean, variance and third order
moment of Σn(t).

Task Accuracy in [8] Accuracy using our HLDL-SVM

1-back-RELAX 71.5% 75%
2-back-RELAX 80.3% 87.5%
3-back-RELAX 80.5% 87.5%

V. DISCUSSION AND CONCLUSION
Table II clearly depicts the successful classification be-

tween the three n-back tasks for a subject. The 1-back
task and the 3-back task have the highest accuracy, as is
expected due to the differences in their difficulty levels.
The same reasoning can be applied to 2-back and 3-back
accuracy of 67.5%. In Table III we classify the 3 n-back tasks
against the RELAX signal where the rest period was taken as
baseline. In this case, we are able to achieve better accuracy
while distinguishing 1-back, 2-back, and 3-back tasks against
RELAX compared with results reported in [8].

In this paper we apply heirarchical latent dictionary func-
tions on fNIRS data. We obtain and analyze the covariance
matrices which depict the neuronal connections in the brain.
The correlations obtained can be used to gain insights into
the dynamic functional connectivity of the brain. The shared
covariance between the trials of a single n-back experiment
reflects the coactivation patterns in the brain that are specific
for an experiment. The heteroscedasticity built into the model
further helps to capture time varying covariances between
sensors. One of the applications of functional connectivity is
to detect variations in different cognitive states of the brain.
We then use the covariance matrices obtained to classify the
tasks using the SVM algorithm. Studies like [22] show the
application of fNIRS for cognitive tasks. Our model can be
used to better obtain and classify these cognitive processes.
Final classification results verify that our proposed method
obtains better classification accuracies between a variety of
binary classifications than [8].
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