
A Novel Filter for Tracking Real-World Cognitive Stress using
Multi-Time-Scale Point Process Observations

Dilranjan S. Wickramasuriya, Student Member, IEEE and Rose T. Faghih, Member, IEEE

Abstract— Determining the relationship between neurocogni-
tive stress and changes in physiological signals is an important
aspect of wearable monitoring. We present a state-space ap-
proach for tracking stress from skin conductance and elec-
trocardiography measurements. Individual skin conductance
responses (SCRs) are a primary source of information in a
skin conductance signal and their rate of occurrence is related
to psychological arousal. Likewise, heart rate too varies with
emotion. We model SCRs and heartbeats as two different stress-
related point processes linked to the same sympathetic nervous
system activation. We derive Kalman-like filter equations for
tracking stress and use both expectation-maximization and
maximum likelihood estimation for parameter recovery. Our
preliminary results show that stress is high when a task is
unfamiliar, but reduces gradually with familiarity, albeit in
the presence of other external stressors. The method demon-
strates the feasibility of tracking real-world stress using skin
conductance and heart rate measurements. It also serves as
a novel state estimation framework for multiple point process
observations on different time scales.

I. INTRODUCTION
Stress involves a combination of factors including psycho-

logical arousal, a loss of control and unpleasantness [1]. Mul-
tiple studies have sought to examine changes in physiological
signals during stress (e.g. [2], [3], [4]). Many experiments
however, have included tasks such as color-word associa-
tions, puzzles and memory problems that only artificially
induce stress in participants within laboratory environments.
Fewer studies have sought to examine physiological signal
changes in response to stress in more realistic environments
that resemble actual work spaces with tasks including typical
office-like work. Here, we develop a state-space model
for tracking stress from skin conductance and heart rate
using data collected in such an environment. Heart rate
is derived from electrocardiography (EKG) measurements.
A skin conductance signal consists of both a slow tonic
component and a faster phasic component [5]. Individual skin
conductance response (SCR) occurrences make up the phasic
component and are used to form a point process. R-peaks
are a prominent feature in an EKG signal and co-occur with
rhythmic ventricular contractions as the heart pumps blood
to the lungs and the rest of the body. These EKG R-peaks
form the second point process. The method presented here is
an extension of our model in [6] and uses Bayesian filtering
for stress state estimation within an iterative Expectation-
Maximization (EM) framework.
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II. METHODS

A. Data

We use the Smart Reasoning for Well-being at Home and
at Work (SWELL) data-set [7]. In it, skin conductance, EKG,
computer interactions, video and posture data were recorded
from subjects as they engaged in activities typically per-
formed in an office. The tasks included preparing reports and
presentations, and responding to e-mails. The experimental
trials were divided into three blocks and each subject had to
prepare two reports and a Powerpoint presentation (on one
of those reports) in every block. In the first block, subjects
could take as much time as they liked. In one of the other
two blocks, subjects were sent eight e-mails—some of which
were irrelevant—and were told to make use of the incoming
information and reply as required. In the remaining block, a
subject could only take 2/3rds of the time taken for the very
first block. The order of these last two blocks was varied
from subject to subject. Here, we label these blocks as the
Unfamiliar Task (UT) block (since the subjects were newly
introduced to the experimental task), the Repeated Task (RT)
block and the Constrained Task (CT) block.

The six report and presentation topics included: stress
at work, healthy living, internet privacy, tourist attractions
in Perth, the life of Napoleon and details for a road trip
across the United States. Two topics were randomly selected
each block and subjects were permitted to browse the web
in preparing their reports. Each block was preceded by 8
minutes of relaxing music. Here, we provide detailed analysis
for one subject (subject 16) over all three blocks.

B. Preprocessing

The skin conductance and EKG data were recorded at
2048 Hz in the SWELL data-set. Many of the skin con-
ductance recordings were heavily noise contaminated. We
visually inspected these recordings and selected the subject
having the least contamination across all blocks UT, RT
and CT. We next manually identified locations where mo-
tion artifact corruption was present (usually manifesting as
sharp drops) and linearly interpolated over them. We finally
lowpass filter the skin conductance at 0.5 Hz similar to [8]
and downsample the data to 4 Hz. We also perform peak
detection on the EKGs to identify R-peaks.

C. State-space Model

Similar to [6], we assume the subject’s stress state Xk

follows a random walk with time:

Xk = Xk−1 + εk, (1)



where εk is zero-mean Gaussian noise having variance σ2
ε .

Skin conductance zk is a low-bandwidth signal and wearable
monitors such as the Empatica E4 record data at a sampling
frequency of 4 Hz. We too analyze our data at 4 Hz (ts =
0.25 s). We first decompose the skin conductance into its
constituent phasic and tonic parts using cvxEDA [9] and
detect SCRs as phasic peaks exceeding a 0.1 threshold.
Thereafter, we form a binary point process assigning Mk =
{1, 0} based on the presence or absence of a peak within
each ts time bin. The occurrence of a peak is a Bernoulli
distributed random variable with probability pk. Using the
theory of generalized linear models we relate pk to Xk using
the logit transformation suggested in [10]:

log
( pk

1− pk

)
= β0 + β1Xk, (2)

where β0 and β1 are regression coefficients. Prior work in
state estimation from binary data frequently sets β1 = 1
and determines β0 empirically (e.g. [11], [12], [13]). This
also helps avoid convergence issues that can occur if both
β0 and β1 are determined using EM. As in [11], we set
β1 = 1 letting pk =

[
1 + e−(β0+Xk)

]−1
and determine β0

empirically taking p0 as the chance probability that a phasic
peak occurs at the very outset of the experiment when X0 ≈
0 [6]. MK = {M1,M2, . . . ,MK} forms our first set of
binary observations where each new Mk arrives every ts.

We next wish to relate heart rate to stress. To do so, we
make use of the history-dependent inverse Gaussian (HDIG)
probability model [14]. Assume that L consecutive R-peaks
occur at times ul in the interval (0, T ] such that 0 < u1 <
u2 < . . . < uL ≤ T , and the lth RR-interval is wl = ul −
ul−1. At time t > ul, the inter-arrival times of the R-peaks
can be modeled using an HDIG density function

g(t|ul) =

√
θq+1

2π(t− ul)3
exp

{
−θq+1[t− ul − µ̂]2

2µ̂2(t− ul)

}
, (3)

where q is the model order, µ̂ = θ0 +
∑q
i=1 θiwl−i+1 and

θq+1 is a parameter related to the variance (all the θi terms
are coefficients to be determined).

Recall that we perform our analysis at 4 Hz. We first
divide time into discrete bins of ∆ = 0.005 s similar to
[14] for HDIG modeling. Therefore, there are ts/∆ = 50
such bins during each ts interval, i.e., there are 50 heart rate
observation bins for each skin conductance observation Mk

(hence forming multi-time-scale point process observations).
We index these heart rate bins over j = 1, 2, . . . , J , where
J = 50. Thereafter, each bin is assigned Nk,j = 1 or
Nk,j = 0 based on whether or not an R-peak occurs within
it. The joint probability over these J observations is [15],

P (Nk,1, Nk,2, . . . , Nk,J) = e
∑J

j=1 log(λk,j∆)nk,j−λk,j∆ (4)

where λk,j is the conditional intensity function (CIF)

λk,j ,
g(tk,j |uk,j)

1−
∫ tk,j

uk,j
g(z|uk,j)dz

, (5)

with uk,j being the time that the last R-peak occurred
prior to tk,j . The joint density function accounts for the

R-peak history at each point via λk,j and does not require
independence over Nk,j . In order to incorporate the stress
state Xk into the HDIG model, we modify µ̂ and define
µ = θ0 +

∑q
i=1 θiwl−i+1 +ηXk as the new stress-dependent

mean; here η is a parameter to be determined. Accordingly,
we expect the HDIG density function to shift either to
the left or to the right as stress levels change. NK =
{N1,1, . . . , N1,J , N2,1, . . . , N2,J , . . . , NK,1, . . . , NK,J}
forms the second set of binary observations.

D. Estimation

1) Expectation-Step: Given MK and NK , we wish to
determine Xk ∀k. The present work is a novel filter for esti-
mating Xk combining skin conductance and heart rate at two
different time scales. Letting Yk = {Mk,N k} denote the
observations up to the kth time instance, we make a Gaussian
approximation to the posterior density fXk|Yk(xk|yk) similar
to [16] to derive the following Kalman-like forward filter
equations for k = 2 : K:
Predict: xk|k−1 = xk−1|k−1 (6)

σ2
k|k−1 = σ2

k−1|k−1 + σ2
ε (7)

Update:
xk|k = xk|k−1 + σ2

k|k−1

[
(mk − pk|k)

+

J∑
j=1

1

λk,j|k

∂λk,j|k

∂xk
(nk,j − λk,j|k∆)

]
(8)

σ2
k|k =

{
1

σ2
k|k−1

+ pk|k(1− pk|k)

−
J∑
j=1

[
1

λk,j|k

∂2λk,j|k

∂x2
k

(nk,j − λk,j|k∆)

− nk,j
λ2
k,j|k

(
∂λk,j|k

∂xk

)2]}−1

(9)

We solve (8) using Newton’s method as xk|k appears on both
sides of the equality sign. The smoothed estimates are [11],

Ak ,
σ2
k|k

σ2
k+1|k

(10)

xk|K = xk|k +Ak(xk+1|K − xk+1|k) (11)

σ2
k|K = σ2

k|k +A2
k(σ2

k+1|K − σ
2
k+1|k). (12)

2) Maximization-Step: We determine the noise variance
of the random walk σ2

ε using EM. Defining the following,

Uk , x2
k|K + σ2

k|K (13)

Uk,k+1 , xk|Kxk+1|K +Akσ
2
k+1|K (14)

the variance update for the (n+ 1)th iteration is given by,

σ2(n+1)
ε =

1

K

[
K∑
k=2

Uk − 2

K−1∑
k=1

Uk,k+1 +

K−1∑
k=1

Uk

]
. (15)

Here, we have set X0 = X1 instead of treating it as a separate
parameter similar to one of the options provided in [11], [12].
This allows for some bias at the beginning.



Fig. 1: Stress state estimation. In each sub-figure, the sub-panels in turn depict, (i) the skin conductance signal; (ii) the
phasic SCR peak occurrences; (iii) the stress estimate xk|K and its confidence limits; (iv) the probability of a phasic SCR
peak occurrence pk|K and its confidence limits (the black dashed line indicates the baseline probability p0); (v) RR-intervals
(orange dots) and HDIG model fits (blue line); (vi) stress certainty level with the upper and lower portions highlighting the
region above 90% (red) and below 10% (green) respectively.

Determining η requires us to maximize the following
expected log-likelihood term:

Q =

K∑
k=1

J∑
j=1

E
[

log(λk,j∆)nk,j − λk,j∆
]
. (16)

Maximizing Q with respect to η is prohibitively time con-
suming in MATLAB. Therefore, we perform a Taylor series
expansion around each xk|K and try a fixed set of η values
and choose the best one that maximizes Q. As heart rate
generally speeds up with stress causing RR-intervals to
decrease, we searched negative values for η ranging from
(−1)× 10−5 to (−1)× 10−4 in increments of 10−5.

3) Maximum Likelihood Estimation: The values for Θ =
{θ0, θ1, . . . , θq+1} were likewise not determined using EM
due to time consumption. Instead the best Θ was calcu-
lated via maximum likelihood considering the complete RR-
interval time series [14]. Model fits to the RR-intervals are
evaluated using a Kolmogorov-Smirnov (KS) plot [14]. The
KS distance in a KS plot provides a measure of how well the
model fits to the observed data. Barbieri et al. [14] selected
q = 2, 4 for their experimental data based on Akaike’s
information criteria and KS plots. Following their approach,
we explored orders q = 1, 2, 3, 4 and selected the q = 3 as
the one with the smallest KS distance across all three trial
blocks. Higher orders for q could also be investigated.

E. Certainty Level of Stress

Similar to [11], a certainty level of stress can be calculated
using the probability density function of pk

f(pk) =
1√

2πσ2
k|Kpk(1− pk)

· exp

{
−1

2σ2
k|K

[
− xk|K + log

pk
(1− pk)eβ0

]}
.

(17)

The stress certainty level is the probability that pk > p0, i.e.,
a measure of how certain we are that phasic SCR peaks are
occurring more than just by chance. This could equivalently
be calculated based on the state estimates for Xk.

III. RESULTS

Stress estimates for the three experimental blocks and
corresponding KS plots are shown in Figs. 1 and 2 re-
spectively. Stress levels as measured by the certainty level
are highest at the start of the experiment in block UT and
gradually decrease. Here, stress certainty exceeds 90% for
about the first 20 minutes. In block RT, stress certainty
does not exceed 90% even once, although it is highest at
the start of the block. Stress remains lowest during block
CT and a gradual increase can be seen as the experiment
progresses. This may be expected as the subject had to
complete the writing tasks within the shortened time limit.
The raw skin conductance level also contains information
regarding arousal [17], although we have not taken it into
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Fig. 2: KS plots. The plots indicate the goodness of fit of
the CIF to the RR-intervals.



account here. zk decreases from block UT, to RT, to CT
indicating a decline in arousal as the experiment proceeds.

The KS plots do not fall entirely within the 95% confi-
dence limits although there is close agreement. In general,
the better the CIF for modeling heart rate, the closer will be
the plot to the 45o diagonal. Fig. 3 appears to show some
irregularity in the subject’s EKG. The unusually large RR-
intervals may have caused errors in the HDIG model fits.
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Fig. 3: A section of the subject’s EKG. The red dots depict
R-peaks and the orange stars depict locations of possible
EKG irregularities.

IV. DISCUSSION

The experiment in [7] was originally designed to examine
psychological stress in the presence of external interruptions
and time restriction pressures. While interruptions and time
constraints do cause anxiety, our analysis seems to point out
that unfamiliarity or how new a task is to someone seems to
have caused the most stress to subject 16. It may be the case
that unfamiliarity with a task dominates the anxiety caused
by both time constraints and unnecessary interruptions.

Stress is a subjective experience. Participants in the
SWELL data-set gave single-number estimates of how they
felt with regard to different aspects (e.g. arousal, valence,
dominance) during each task block. Variability often exists in
subjective ratings. The features we track are related to how
much a person’s sympathetic nervous system is activated.
Our method therefore provides an unsupervised approach for
tracking stress continuously in the absence of labels.

V. CONCLUSIONS

We present a state-space model for tracking stress using
skin conductance and EKG measurements. The model was
evaluated on a single subject in the SWELL data-set across
three experimental conditions. Our preliminary results point
to the fact that unfamiliarity with a task appears to be the
primary cause of stress in this experiment. Future work
would involve including the effect of skin conductance level
into the model and developing an adaptive filter for motion
artifact removal. We also plan to perform further validation
with experimental data. Here, we used a peak detection
method here for locating SCRs. A further improvement
would be to incorporate the sparse deconvolution scheme in
[18], [19], [20], [21] to determine SCR timing and amplitude
more precisely.
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